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ABSTRACT 

Much research in ubiquitous computing assumes that a 
user’s phone will be always on and at-hand, for collecting 
user context and for communicating with a user. Previous 
work with the previous generation of mobile phones has 
shown that such an assumption is false. Here, we 
investigate whether this assumption about users’ proximity 
to their mobile phones holds for a new generation of mobile 
phones, smart phones. We conduct a data collection field 
study of 28 smart phone owners over a period of 4 weeks. 
We show that in fact this assumption is still false, with the 
within arm’s reach proximity being true close to 50% of the 
time, similar to the earlier work. However, we also show 
that smart phone proximity within the same room 
(arm+room) as the user is true almost 90% of the time. We 
discuss the reasons for these phone proximities and the 
implications of this on the development of mobile phone 
applications, particularly those that collect user and 
environmental context, and delivering notification to users. 
We also show that we can accurately predict the proximity 
at the arm level and arm+room level with 75 and 83% 
accuracy, respectively, with features simple to collect and 
model on a mobile phone. Further we show that for several 
individuals who are almost always within the arm+room 
level, we can predict this level with over 90% accuracy. 

Author Keywords 
Proximity, mobile devices, mobility, smart phone. 

ACM Classification Keywords 
H.m. Information systems: Miscellaneous.  

General Terms 
Experimentation, Human Factors 

INTRODUCTION 
It is without question that we are living in a world where 
emerging mobile personal devices and high-capacity 
wireless networks are enabling new and innovative 
applications that compliment many different aspects of 
daily life. Over the past decade, mobile computing has 
become ever more present in our society, particularly as 

smart phones become more prevalent. By December 2010, 
31% of U.S. mobile phone users had smart phones [14] and 
this figure is expected to cross 50% by the end of 2011 [7]. 
This trend holds worldwide, with almost 300 million smart 
phones being sold in 2010 [5] and another 500 million 
predicted for 2012 [4]. 

In keeping with this trend, there has been an underlying 
assumption in much of the work in ubiquitous computing 
that a phone is always with its owner. This assumption, if 
true, means that ubiquitous computing systems can use the 
phone as a medium for collecting data from users and 
communicating information to users, at any time. Further, 
this means that the mobile phone is an accurate proxy to 
collect contextual information on users’ location and 
activity. This assumption was investigated in 2006 [20] 
when mobile devices were not as robust and feature-filled 
as they are today. At that time Patel et al. found that when 
participants had their phones on (81% of the time), they 
kept their phone within arm’s reach 58% of that time, 
which was less than the participants perceived themselves 
as doing, and the phone was within the same room as 
participants an extra 20% of the time. 

Since this study, five years ago, we have seen the 
introduction and mass adoption of Apple’s iPhone and the 
Android platform that have redefined the mobile computing 
experience, and the operating systems and capabilities of 
mobile devices that are available to the average user. We 
now live in an era of so-called “smart” phones. These 
mobile devices have progressed far beyond a means of 
making and receiving phone calls, and for many, have 
become an almost indispensable tool to access information, 
complete tasks, be entertained and communicate in a wide 
variety of ways (e.g., Skype, instant messenger, email). As 
a whole, it seems reasonable then to presume that people 
rely on their mobile phones far more than they used to and 
are thus likely to keep it more accessible as well.  Based on 
the widespread availability of smart phones, it is important 
to re-investigate the assumption (and Patel et al.’s findings) 
about users’ proximity to their phones, to determine if the 
smart phone is as ubiquitous a device as we believe. 

Using a series of surveys and interviews, as well as by 
employing an application on Android mobile devices, we 
have gathered both quantitative and qualitative data from 28 
participants over 4 weeks of real-world behaviors with their 
own smart phones. For this study we looked at participants’ 
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proximity to their smart phone via Bluetooth monitoring. In 
addition we automatically collected a wide range of sensor 
data from their phones. Supplementing this objective field 
data are interviews, surveys and day reconstruction 
exercises with users that help to give a sense of context. 
Beyond these 28 participants, we also surveyed 367 smart 
phone users about their perceived proximity to their smart 
phones and their habits surrounding smart phone use. 

The contribution of this paper is three-fold.  The first is to 
present empirical evidence to understand the degree to 
which current smart phones are an accurate proxy for their 
owners’ location and context. Second, we identify themes 
that help explain these results, providing implications for 
future application development. Finally, we demonstrate 
that we can build accurate predictive models of proximity 
using readily available features about user activity. We 
begin with a discussion of related work. 

RELATED WORK 
As mobile phones become smaller and more powerful 
computing devices, they have also become more prevalent 
in the world at large [5,14]. The evolution of the mobile 
phone has led it to move far beyond a simple 
communication device and now is a versatile tool for 
connecting people to their digital lives on various social 
networks and e-mail, providing them with access to the 
Internet, and even for entertaining them by supporting the 
playing of games, music, and video.  This evolution has 
even lent itself to referring to these robust devices as smart 
phones. The potential for the use of smart phones in 
ubiquitous computing has not gone unexplored over the 
past decade. 

Leveraging the capabilities of smart phones, data can now 
be captured that would have previously required carrying 
customized hardware or a large number of specialized 
devices [22]. Examples of new applications enabled by the 
convergence of functionality in smart phones include 
healthcare [9,12,21], support for the elderly [18], 
augmenting advertising [16], understanding social networks 
and behavior [6,17], among many others. 

Knowing that a user has her smart phone on and nearby (or 
tends to) is useful for ubiquitous computing and mobile 
application development, as the smart phone offers the 
unique ability to communicate information to a user and 
collect information from a user, regardless of location or 
time. However, it is not just knowing that the phone is 
nearby that can offer a meaningful contribution. There is a 
whole field of research and design that has arisen from 
being able to leverage the mobile phone as a means to 
gather contextual information and build an understanding of 
human behavior and the environment at large. Related work 
in this area includes activity sensing endeavors such as 
UbiFit [1], SenSay [15], and MotionBand [9] that leverage 
context-sensing to support people’s day-to-day actions. 

In 2006 Patel et al. studied people’s proximity to their 
mobile phone as well as their perceived proximity to their 

phone and found that people had higher expectations of 
their availability to their phone then was found to be the 
case in actuality [20]. On average they found that the phone 
was on 81% of the time. When it was on, it was within 
arm’s reach 58% of the time, and within the same room as 
their owners an additional 20% of the on time, leaving 23% 
when the phone was on and considered “unavailable” to the 
user. In actuality, the true unavailable time should include 
the time when the phone was off, equaling 38% of the day, 
on average. Trends that were noted upon by Patel include a 
small, not statistically significant variance on cell phone 
proximity between weekday (59%) and weekends (53%), 
waking versus sleep (61% awake, 52% asleep, and home 
and away (est. 50% to 71%). Furthermore they explored 
whether a proximity relationship between users and their 
mobile phones could be predicted by applying classifiers to 
context data that could be easily acquired from the phones 
themselves. With one week of training data, their classifiers 
determined whether the phone was within arm’s reach with 
86% accuracy. 

The findings of this research, and its implications for how 
the data gathered on a mobile phone can be leveraged to 
give insights into the user’s context, have been cited in 
numerous subsequent articles.  While some have referenced 
it as evidence that mobile phones can serve as a reasonably 
accurate proxy for a user’s location and context [8,19,23], 
others interpret the paper’s findings as the opposite: the 
phone is not a good proxy for a user’s location [1,12,16]. 
Not surprisingly, the true interpretation depends on the 
application, users, and context of use being designed for. 

The question we want to explore in this paper is whether 
with the evolution of the smart phone (and all the services 
and apps now available) over the past five years since the 
Patel et al. paper was published, users’ proximity to their 
phone has changed. Smart phones have become not only 
more commonplace, but more powerful computing devices 
used to connect people to their e-mail, social networks, and 
entertainment, through a wide variety of available apps. In 
investigating user behavior at this stage of mobile 
technology, we explore implications for mobile applications 
that can inform developers, researchers, and technologists 
as they innovate and envision new uses and applications for 
mobile phones.  

EXPERIMENTAL DESIGN 
We now describe the design of our experiment in which we 
sought to understand how users’ proximity to their phones 
has changed with the availability of smart phones.  

Overview 
In order to accurately replicate the proximity study from 
Patel et al. [20], we contacted the authors of this paper and 
requested the experimental instruments they used and asked 
for additional details on their experimental setup. By doing 
so, we were able to closely replicate the original study. We 
briefly describe that study and the instruments used, and 
highlight differences in our study.  



 

 

In keeping with the original experimental setup, we used 
mixed methods: surveys to collect information about 
subjects’ perceptions about their phone use and phone 
proximity, and a 4-week long deployment of data collection 
software on subjects’ own Android phones to collect both 
proximity information and a wide variety of contextual 
information. We also conducted weekly interviews to 
provide additional context to this data. Our study differs 
from the original study, which provided mobile phones to 
subjects, and included 16 participants for 3 weeks. 

Surveys 
The original survey instrument asked questions about the 
respondents’ age and occupation, how they thought they 
used their phones and how close they thought they kept 
their phones in different situations. We adapted this survey 
to collect additional information on mobile applications 
they use and their frequency of use, what applications they 
would be interested in using, as well as their general 
experience with the phone and expectations being met (or 
not) with respect to mobile communications. We also 
collected detailed socio-economic status information of 
respondents, including education level, experience with 
mobile technologies (year started using).   

We used the responses to the survey to select subjects for 
our study of smart phone proximity. Subjects were 
randomly selected from those respondents having an 
Android phone with an unlimited data plan and being 
willing to participate in the 4-week long study.  

Mobile Users Data Collection Study 

Interview 
Participants selected for our study came to our lab, where 
we explained our study and what we expected of them in 
detail. We also deployed our proximity monitoring and 
context data capturing framework on their Android phone, 
provided them with a Bluetooth device to collect proximity 
information, and collected some proximity calibration data. 
We describe our automated data collection process below. 

Android AWARE Data Collection Framework   
Sensors and Internet connectivity in mobile devices provide 
researchers an opportunity to capture real-life context 
information from the owners of the mobile devices and to 
collect information on the proximity of the phones to their 
owners. We developed the AWARE Android framework, to 
help gather this information. The framework was developed 
using Android SDK 2.1, was tested and then deployed on a 
variety of Android devices throughout our user study. In 
consideration of space, we only present the sensing 
modules in the framework that are relevant to our 
exploration of phone proximity. While some of these 
modules may not seem relevant to proximity, we erred on 
the side of sensing completeness in order to identify as 
many factors as possible that impact proximity. 

Activity Manager: Every 3 seconds, this module collects 
information about the active, inactive and background 
processes, current active activity on the screen, CPU and 

memory usage by application and system by querying the 
Android API Activity Manager. 

Battery Manager: This module logs battery-related events 
with information such as percentage, temperature, health, 
voltage, technology and uptime (amount of time without 
charging), when the phone was plugged in and unplugged 
to the power supply (USB and AC). 

Bluetooth Manager: The framework scans each minute for 
Bluetooth devices in the vicinity, keeping a record of their 
MAC address, friendly name and Received Signal Strength 
Indication (RSSI) value.  

Call Manager: This module keeps track of incoming, 
missed and outgoing calls, including call duration, time of 
call and phone number.  

Phone Manager: This module captures the phone’s carrier 
information on the device, such as tower location, whether 
the phone has an active data plan, IP address, the device ID 
(IMEI for GSM devices and MEID for CDMA devices), the 
device’s phone number, neighbor cell towers, network 
country, network operator, network type (CDMA, GSM, 
UMTS, etc.) and roaming status. It also provides 
information about the software running on the device, 
including version, manufacturer and device model. 

Location Manager: This module collects the device’s 
location (latitude, longitude, bearing, altitude, speed and 
accuracy), using network triangulation and GPS 
coordinates. As per the Android’s developer 
recommendation, a one-minute interval is used for polling 
for GPS and Network-provided coordinates. The Location 
Manager first acquires a network-provided location, as it 
requires less battery power to quickly get the mobile 
device’s location. Once a preliminary location is acquired, a 
GPS location is requested, as network location is less 
accurate. If the acquisition of GPS location fails for some 
reason (e.g., user is indoors, phone failed to acquire satellite 
GPS signal, GPS turned off), the network location is 
logged. If the user is moving, a new location is requested 
for every ten meters of motion on GPS or for every 100 
meters through the network location. 

Network Manager: This module logs network traffic 
(received and sent) on available network interfaces (Wi-Fi, 
Carrier network) and assigned IP address for each network 
interface, along with network connections/disconnections.  

Screen Manager: This module detects when the user turns 
On/Off the screen and unlocks/locks the screen. 

Sensor Manager: This module logs sensor events from all 
the available sensors on the device, such as the 
accelerometer, ambient light sensor, magnetometer, 
pressure sensor, gyroscope, orientation sensor and 
temperature sensor. It also captures the vendor, precision, 
power consumption and sensor range values for each. 

Messaging Manager: This module logs SMS and MMS 
messages received/sent (including time and phone number). 



 

 

Weather Manager: Each time the device’s location changes, 
the weather forecast for the current day and location is 
gathered from Weather.com. 

Wi-Fi Manager: Every minute, this module logs the current 
Wi-Fi state (active, inactive) and access point information 
(connected and neighbor access points), such as MAC 
addresses, broadcasted SSID, hidden SSID, link speed, 
RSSI values, network capabilities, and each channel’s 
frequency. 

WatchDog: The WatchDog monitors the framework 
operation each minute, verifying that all the data logging 
modules are running and restarts any that are not. It also 
pings our server every 5 minutes to indicate that the 
framework is still alive and collecting data. A separate 
server process notifies the study participant by email to 
check her phone (and eventually reboot it), if it does not 
receive this ping for more than 30 minutes.  

We stored all logged data into an SQLite database on the 
mobile’s phone external storage (i.e. miniSD card), rather 
than using the phone’s internal memory. Offloading the 
data from internal to external memory kept the phone’s 
memory available for the proper operation of the device, 
reducing the influence of the framework on the device’s 
operation. 

 
Figure 1. Bluetooth tags given to participants 

Proximity Data Collection 
To collect data on the proximity of users to their smart 
phones, we provided Bluetooth devices to our subjects, as 
in the original Patel paper. However, unlike the original 
work, we did not have enough of a single type of Bluetooth 
device, so we used a combination of BlueLon Bluetooth 
tags (3) and Nokia Bluetooth GPS devices (25) (Figure 1). 
We provided lanyards to each participant to wear the device 
around their neck. Every morning, participants received an 
automated email, reminding them to wear their 
device.Similar  to the original study, the Bluetooth Manager 
in the AWARE framework performs a Bluetooth scan every 
60 seconds, and determines the distance of the phone from 
the provided Bluetooth device using RSSI measurements. 
However, because we did not provide smart phones to our 
subjects and because we used a variety of Bluetooth 
devices, we collected calibration data for each user (smart 
phone-Bluetooth device pair). We collected a few minutes 
of RSSI data for each of the following: within arm’s reach 
(1-2 meters), within the same room (5-6 meters) and 
unavailable (beyond 6 meters). After removing outlier RSSI 
values (using a quartile approach), we identified the range 
of  valid RSSI  values  for  each  of  our  3 distances. We do  

Table 1: Demographic information, percentage data lost to 
framework errors. Also, ignoring lost data, percentage phone 

off and proximity without (and with) off data 

  Gender Profession % 
bad 
data 

% 
off 

data 

% 
arm 

% 
arm + 
room 

1 F Software eng. 4 16 47 (40) 95 (80) 
2 M Owner, moving 

company 
25 24 45 (34) 78 (59) 

3 M Admin. Asst. 21 21 27 (22) 94 (75) 
4 M Driver 8 31 76 (52) 89 (61) 
5 M Student 16 21 76 (60) 99 (79) 
6 M AP coordinator 6 21 85 (68) 97 (77) 
7 F Designer 19 8 48 (44) 90 (83) 
8 M Web developer 54 17 53 (44) 72 (60) 
9 M PC technician 17 21 25 (19) 87 (68) 
10 F Software eng. 7 6 87 (82) 100 

(94) 
11 M Graphic 

designer 
14 23 30 (23) 68 (53) 

12 M Paramedic 15 31 65 (45) 99 (68) 
13 M Program 

manager 
53 23 54 (41) 100 

(77) 
14 F Researcher 16 23 32 (24) 44 (33) 
15 M Salesman 11 15 26 (22) 80 (68) 
16 M Collections 

agent 
18 9 38 (34) 99 (91) 

17 F Librarian 9 8 74 (68) 96 (88) 
18 M Software eng. 5 7 47 (44) 100 

(93) 
19 F Photo lab tech 22 16 51 (42) 66 (56) 
20 M Advertising 

agent 
13 13 96 (83) 99 (86) 

21 M Software eng. 7 38 68 (42) 98 (60) 
22 M Systems 

analyst 
11 21 43 (34) 86 (68) 

23 M Student 51 33 67 (45) 99 (66) 
24 M Teacher 18 54 38 (17) 82 (38) 
25 F Therapist 0 42 36 (21) 78 (46) 
26 M Social worker 7 16 38 (32) 93 (78) 
27 M Software 

analyst 
37 30 34 (24) 84 (58) 

28 F Manager 9 18 73 (59) 99 (81) 
       

note that even when using the same model of phone and the 
same model of Bluetooth tag, calibration was necessary, as 
different combinations of the same models resulted in 
different RSSI ranges.   

Weekly Interviews 
When our deployment subjects returned to our office each 
week over the 4-week study, we interviewed them for 
ground truth about their proximity to their mobile phone. 
This information was compared to the data automatically 
logged by the AWARE framework. Similar to the original 
study, participants completed a diary of the previous 24-



 

 

hour period wherein they record their activity and the 
relative location of their mobile phone, as suggested by the 
Day Reconstruction Method [13]. This method breaks the 
day into episodes described by activities, locations and time 
intervals, and the location of the phone during these times. 
During the interview, users explained, in more detail, the 
factors influencing their proximity. This way causalities and 
relations between proximity and user behavior could be 
identified, and any inconsistencies in the AWARE 
framework data could be clarified. As well, they indicated 
when they forgot the phone/tag, or took the tag off. 

SUBJECTS 
Thirty subjects were recruited using Internet advertisements 
in <city removed> using the survey described above as a 
screener. We compensated subjects with $250 each for 
participating in the entire study. Subjects’ ages ranged from 
18 to 45, and included 9 females and 21 males. They came 
from a range of ethnic and cultural backgrounds and had 
varying income levels and occupations (see Table 1). Two 
subjects withdrew from the study: one on the second day of 
data collection and the other after completing only the first 
2 weeks. In the following section, we present the results of 
our analysis of the collected data from the remaining 28 
participants, using Droid, Droid X and Nexus One phones.  

 

 
Figure 2. Distribution of proximity levels for each of the 28 

participants, with (upper) and without (lower) off data, with 
the last bar representing the average across all participants. 

RESULTS 
Participants ranged in their participation from 27 to 30 
days. On average, our phone failed to collect Bluetooth 
proximity data (but collected other data) 18% (std. dev. 
15%) of the time. This number is high particularly because 
for some subjects we only noticed that there was a data 
collection error at the weekly interview, and that no data 
was collected that week. The remainder of our results and 
analyses will not include this data. Of the remaining time, 
users either turned their phone or just our application off for 
an average of 22% of the time (Figure 2). One reason this 
was so high is that users turned their phones off to conserve 
battery when they did not think they would use them or 
could not use them. One subject, S24 was a teacher who 

turned off her phone during school hours and at night. S17 
was pregnant and turned off her phone in the evening and 
night. Despite our attempts to keep the AWARE 
framework’s energy footprint low by making it mostly 
event-driven, some of our subjects complained about the 
impact it had on their phone battery and having to recharge 
more frequently. 

Proximity Results 
We acquired between 13430 and 37564 proximity samples 
(i.e., number of minutes) from our subjects, with the 
average being 26474. Because not all subjects participated 
for the same number of days, these results are best viewed 
as percentages of participation (not including framework 
data acquisition errors, but including time when the phone 
was turned off) range from 46 to 94%, averaging 78%. 

In contrast to our hypothesis that users of smart phones 
carry their phones with them (i.e., within arm’s reach) more 
than users of the previous generation of mobile phones, we 
found that our participants had their phones within arm’s 
reach on average for only 53% of the time when the phone 
was on. This is similar to what Patel et al. found in 2006: 
58% (see Table 2 for proximity percentages that include the 
time the phone was off). However, participants’ perceptions 
were that their phone was within arm’s reach 91% of the 
time. While most participants grossly overestimated their 
proximity, there were 3 subjects (S1, S26, S27) whose 
estimation was ~58%, much closer to the actual proximity.  

However, while there was not an increase in the amount of 
time the phone was within arm’s reach, we did find a 
substantial increase in the amount of time that our subject’s 
smart phones were outside of arm’s reach but were in the 
same room as them: 35% in our study vs. 20% from the 
previous study. Combining both within arm’s reach and 
within the same room (arm+room) results in a total of 88% 
for our smart phone study and 78% for Patel et al.’s mobile 
phone study. 
Table 2: Comparison of proximity between original study and 

ours, not including (and including) off time 
  Arm’s Reach Room level Arm + Room 

Original 58% (47) 20% (16) 78% (63) 
Our study 53% (42) 35% (28) 88% (69) 

Proximity and Contextual Factors 
We also examined the impact of different contextual factors 
such as day of week, time of day, and location. There were 
no differences in the proximity of the phone between 
weekdays and weekends: 53% and 52% within arm’s reach 
for weekdays and weekends, respectively; and 89% and 
87% for within room (and arm’s) reach, respectively. This 
matches participants’ perceptions that there was little 
difference between weekends and weekdays. The original 
paper reported similar results of 59% and 53% for within 
arm’s reach for the weekdays and weekends, respectively.  
The phone was within arm’s reach 56% of the time when 
subjects were sleeping (estimated between 11pm and 7am), 
and 51% of the time, at other times of the day, whereas the  



 

 

Table 3: Comparison of proximity at different times of day 
  Arm Room  Arm + 

Room 
Morning (7-9am) 57% (46) 30% (23) 87% (69) 
Daytime (9am-6pm) 51% (40) 36% (28) 87% (68) 
Evening (6-11pm) 48% (37) 40% (31) 88% (68) 
Night (11pm-7am) 56% (46) 33% (26) 89 %(72) 
Not Night (7am-11pm) 51% (40) 37% (29) 88% (69) 
    

Patel paper showed a different trend with percentages being 
52% and 61%, respectively. There was less distinction at 
the arm+room proximity: 89% while sleeping and 88% at 
other times. Table 3 shows the distribution of proximity for 
different times of the day.  

The phone was within arm’s reach 46% of the time when 
subjects were home (Patel: 50%), and 54% of the time 
(Patel: 71%) when in named locations other than home, and 
within room and arm’s reach cumulatively 83% (Patel: 77% 
when at home), and 85% (Patel: 82% when not at home), 
respectively. Table 4 shows the distribution of proximity 
for different categories of locations that our subjects 
identified in our initial interview. While proximity at the 
arm level varied, proximity at the arm+room level stayed 
relatively stable. Most subjects reported that their proximity 
to their phone was not different between work and home, 
and that perception bears true. 

We also checked to see if there was a correlation between 
proximity at the arm or arm+room level with either time 
spent talking on the phone or the number of SMS/MMS 
sent. However, these factors were not correlated.  

Table 4: Comparison of proximity in different locations 
  Arm Room Unavailable Arm + Room 

Home 46% 36% 17% 83% 
Not Home 54% 31% 15% 85% 
Work 48% 33% 18% 82% 
Shopping 62% 20% 17% 83% 
Leisure 50% 37% 13% 87% 
Family 56% 33% 10% 90% 
Friends 51% 30% 18% 82% 
Gas 74% 3% 22% 78% 
     

Factors Affecting Phone Proximity 
We now discuss factors that impact users’ proximity to 
their phone, based on qualitative information collected from 
the 28 participants in our data collection study, as well as 
the 339 additional subjects who responded to our survey but 
were not selected. Like the original study, we derived our 
factors using affinity clustering to group the self-reported 
factors from our interviews and surveys into themes, and 
from the features that contained the most information gain 
from our predictive models of phone proximity. 

During the weekly interviews, as part of the day 
reconstruction method, we asked participants to describe 
their activities and the proximity of their phone over the 

past 24 hours. We asked them for additional detail about 
why their phone was in a particular location throughout this 
day. We first used this information and the survey data to 
identify the themes in the original study that we did and did 
not (light grey text below) have evidence for, and then to 
identify new themes. 

1. Routine: The phone’s proximity was linked to users’ 
flow of usual activities, e.g., a) at home, leaving phone 
in a fixed/central position such as on a coffee table or 
shelf or at work, leaving it on their desk; b) at home, 
the phone is with the user to support using different 
applications substituting for a PC or to call a spouse 
inside a big house; c) outside the home, carrying the 
phone in a pocket or on a belt clip by a male, and in a 
purse or bag by a female (depending on her outfit). 

2. Environment: The phone’s proximity is related to the 
physical constraints of the space. For example, at 
home, users kept their phones in the same rooms as 
them, while in the car, the phone was most often within 
arm’s reach.  

3. Physicality of person/activity:  The phone’s proximity 
is related to the physicality of the person or the 
person’s activity. For example, while playing sports or 
exercising, we found that users chose to keep their 
phones with them to listen to music. While the theme 
matches that of Patel et al., we find the opposite result. 

4. Disruption to others: In contrast to the original study, 
we have not identified any evidence suggesting that a 
user’s phone proximity is based on how it might affect 
other people or the environment. This could be because 
social norms around cell phone use have evolved over 
the last 5 years [1]. 

5. Disruption of self: The phone’s proximity takes into 
account the impact of proximity on the user. For 
example, at home, users kept phones in central places 
with the idea that it could get their attention regardless 
of their location. Others who responded to our survey 
reported that they put their phones “away” on 
weekends so as not to be bothered. 

6. Regulations: We identified a number of situations 
where users turned off their phones in certain locations 
due to legal or other specific regulations preventing 
use. For example, one subject was a teacher who had to 
turn off her phone in school. Similarly, others turned 
off their phones in churches and hospitals, and in other 
locations where camera phones were forbidden. 

7. Use of phone by self: Users made choices about the 
phone proximity based on their anticipated use of the 
phone. Unlike the earlier study, rather than keeping 
them close for making a phone call, our subjects did 
this for access to data, e.g., carrying the phone inside 
the house to be able to check something quickly on the 
Internet. In addition, from our survey respondents, we 
saw that some people used their mobile phones to 
check their private email accounts while at work. 

8. Use of phone by others: The phone’s proximity was 
affected by the idea that someone else would want to 



 

 

contact the subject. For example, users would keep 
their phone in a fixed/central location in their home to 
hear phone calls (similar to the previous study), or be 
notified about email/SMS arrivals (new in our study). 

9. Use of phone both by self and by others: We primarily 
saw evidence of this theme through descriptions of 
coordination efforts. For example, some kept the phone 
close by to make it easier to coordinate efforts for 
going out with friends on the weekend, while the 
moving company owner did it to coordinate his staff.  

10. Use of handset by others: We did not identify any 
evidence suggesting that a user would make a choice 
about the phone proximity based on the expectation 
that somebody else would physically use the device. 
This could be because smart phones and cell phones 
have become widely available [4,14] and, therefore, are 
becoming more personal devices. 

11. No need for use of phone: When users believed they 
were not going to use their phones soon, users were 
willing to be further away. While only about one-half 
of our subjects had a landline phone, for those who did, 
the expectation that a caller could reach them using this 
line, was evidence of this theme. While at work, having 
access to a PC for relevant data/Internet supplanted use 
of the phone and affected its proximity. 

12. Technical resources: The phone’s proximity is 
impacted by technical considerations inherent to 
limitations of the phone. We saw evidence of this 
theme when users limited the mobility of their phone 
when charging (USB or AC adapter). In addition, 
survey respondents physically moved with their phone 
to acquire improved signal reception in their home. 

13. Quick trips: Unlike the previous study, we found that 
users did not leave their phones behind when taking 
quick trips. Our subjects tended to take their phones 
with them when going on a coffee break and when 
going to the bathroom. This may be related to theme 
#19 about the use of the phone during idle periods. 

14. Memory and forgetfulness: We saw multiple instances 
where users simply forgot their phone at home or work 
or left/forgot it someplace temporarily.  

15. Protection of phone from others: Similar to the 
previous study, we saw that users made choices about 
phone proximity to protect the phone from tampering. 
For example, users put their phone out of reach while 
playing with children. Similarly, survey respondents 
reported leaving their phones behind when going out 
for fear their expensive smart phones would be stolen. 

In addition to the analysis of the 15 themes identified in the 
original paper, we identified 5 new emergent themes: 
16. Costs associated with usage: The phone’s proximity is 

associated with monetary costs related to phone usage. 
While everyone in our study had an unlimited data 
plan, they still had to pay for data usage when traveling 
abroad. As such, the few subjects that left the U.S. 
during our study tended to keep their phone off. 

17. Personal Utility applications: The phone’s proximity is 
related to use of its applications in a given context. For 
example, phones were often used as an alarm in the 
bedroom while subjects were sleeping, to support 
nutrition or sports training in the gym, and to replace 
the use of a PC at home.  

18. Data privacy on the phone: The phone’s proximity is 
related to access of data applications holding or 
accessing private data on the device, e.g., checking 
private email on phone while at work and having 
access to a corporate network while not at work. 

19. Idle time in between activities: The phone’s proximity 
is related to time spent on mobile data applications 
while waiting for some activity to start. For example, 
users checked their email or accessed the web while 
waiting for a friend, waiting for a bus, or even while on 
the toilet. 

20. Applications for planning or scheduling coordinated 
tasks: The phone’s proximity is related to tasks 
requiring the management of coordination and 
cooperation. For example, some users used shared 
grocery lists or to-do lists with a partner, used Google 
Calendar to add new group events, and then accessed 
this information at later times. 

21. Protection of phone from environment: The phone’s 
proximity was affected by users’ beliefs that the phone 
had the potential to be damaged. Survey respondents 
reported leaving their phones behind when going 
fishing (wary about water damage) and when cooking 
in the kitchen (wary about water and heat damage). 

PREDICTING USERS’ PHONE PROXIMITY  
Similar to the Patel paper, we also investigated whether we 
could predict users’ phone proximity using information that 
are already available on the phone, rather than using our 
extra Bluetooth tag. For each subject, we use our Bluetooth 
tag proximity information as ground truth, and attempt to 
predict whether the phone was within arm’s reach, or within 
arm+room. using the contextual information we collected 
with our AWARE framework. If the predictions are 
accurate, application developers can use our prediction 
models to determine when they can use the phone to collect 
contextual information from phone owners (arm’s reach) or 
to collect contextual information about the owner’s 
environment and deliver information to them (arm+room). 

We created models that could classify phone proximity. We 
used a decision tree classifier using the ID3 algorithm so we 
could interpret the resulting trees and determine which 
features were most important to the classification task. 
Features near the root of decision trees usually have high 
predictive power and can be treated as important features.  

We formulated the model building as two supervised 
learning problems, in which the class labels are three (arm 
vs. room vs. unavailable) and two (arm+room vs. 
unavailable) levels of proximity. Each data instance is a 
feature vector extracted with a one minute time window 
from the logged contextual data. We used three different 



 

 

feature sets to build our models. We ranked features for 
each subject using the Greedy Stepwise search method with 
Consistency Subset evaluation method from Weka [10], and 
used the top 3, 5 and all features. Figure 3 shows the 10-
fold cross validation results using all the data from each 
subject for our 2 classification problems. We achieved 75 
and 83% accuracy for the 3-class and 2-class problems, 
respectively, with large variations across our subjects. 

 
Figure 3. Classification accuracy for 3-class (upper) and 2-

class (lower). Blue, red, green represent  3, 5 and all  features,  
S3 (only 2 weeks of data) is included for completeness. 

 
Figure 4. Analysis of the number of weeks of training required 

for accurate 3 –class (arm vs. room vs. unavailable) and 2-
class (arm+room vs. unavail) models. 

To determine how many weeks of data were needed to 
build a reliable model, we trained 3 additional models on 
the first one, two, and three weeks of data, testing on the 
remaining data using 10-fold cross validation. Figure 4 
shows that while 3 weeks of data may not be enough for 
producing accurate models in the 3-class problem, 1 week 
of training provides reasonably high accuracy in the 2-class 
problem. Also, exploiting more features requires more 
training data to model their relationship with proximity.  
We also analyze the features selected using the search 
method (Feature in Table 5) and the features at and near the 
root of the decision trees (DT). Similar to the original study, 

we found hour of day and time of day to be quite predictive 
of proximity. However, location was not very useful. The 
other features we found to be useful were very related to 
activities that the user performs and interaction with the 
phone: acceleration, application used, battery level, battery 
temperature and screen status. Battery temperature is 
particularly interesting as high values are correlated with 
close proximity: carried in a pocket next to a warm body, or 
being used for CPU-intensive applications.  
Table 5: Predictive features for 3-class and 2-class prediction 

problems. Number of participants using each feature from the 
search method (Feature) and decision trees (DT). 

 arm+room vs. other arm vs. room vs. other 

Feature  DT  Feature  DT  

mean acceleration (acc) 8 2 15 2 
std deviation of acc.  5 0 12 3 
application used 4 8 4 8 
battery level 18 20 15 22 
mean battery temp. 24 19 24 17 
tower ID for CSDMA 0 3 0 0 
day of the week 29 27 26 29 
tower ID for GSM 1 0 1 0 
hour of the day 28 24 28 26 
screen status (on, off) 21 4 12 2 
ringer status (on, off) 2 6 0 2 
weather  5 1 3 3 
     

DISCUSSION 
We now discuss our hypothesis about the proximity of 
smart phones, the results of our study, and our analysis.  

Actual Phone Proximity 
We were very surprised to see that there was no increase in 
the proximity of users to their mobile phones, with the 
availability and widespread use of smart phones. Our 
intuition led us to believe that access to the Internet, the use 
of smart phones as entertainment devices, and the huge 
uptake in apps would increase proximity. In fact, we saw a 
slight decline at the arm’s reach from 58% to 53%.  

However, we did see a considerable increase in proximity at 
the room level from 20% to 35%, resulting in an overall 
increase at the arm+room level from 78% to 88%. We first 
describe the implications of this increase and then discuss 
the possible reasons for it. 

Many ubicomp systems make the assumption that users 
always have their smart phones with them. If that 
assumption were true, it would allow these systems to: 
• Collect user context (e.g., motion, activity) 
• Collect user’s environment context (e.g., sound) 
• Get the user’s attention at any time and present 

information (e.g., notifications) 
• Provide an always-available service for the user  

However, our work and Patel’s earlier work showed that 
users don’t have their phones with them at all times. 
However, our work does demonstrate that users often are in 
the same room (or very close by) to their phones. While 



 

 

only a little more than half the time can the phone be used 
as a proxy for the user’s physical context, almost 90% of 
the time, it can be used as a proxy for environmental 
context, a mechanism for getting the user’s attention, and a 
medium for delivering always-available services.  

From our interviews, surveys and our analysis of themes, 
we have a better understanding of why this change occurs 
in users’ proximity to their phones. We heard several 
examples from each of our participants of placing their 
phone down on a table or desk, to keep the phone close by 
and easily reachable, but not immediately at-hand. It was 
enough to have the phone easily reachable in the case of 
notifications or phone calls, to look something up on the 
Internet or to use an app for a short period of time. None of 
these require the phone to be within arm’s reach. Almost all 
the themes discussed (Patel’s orginal and our new ones) 
help provide evidence for why people keep their phones 
nearby, but not necessarily within arm’s reach: routine, 
environment, disruption of self, use of phone by self, use of 
phone by others, use of phone by self and others, use of 
handset by others, no need for use of phone, technical 
resources, quick trips, memory, personal utility 
applications, data privacy on the phone, idle time in 
between activities, applications for planning, and protection 
of phone from environment.  

Perception of Phone Proximity and Individual Difference 
On average, most of our participants believed they were in 
close proximity to their smart phones almost 22 hours a 
day! Half of our participants said they were always next to 
their phones. As we have shown, this number is closer to 10 
hours a day, when taking off time into account. Users 
clearly tend to greatly overestimate their proximity. 
However, users are within arm+room level almost 16.5 
hours per day, when considering off time. We do see 
considerable individual differences. From Table 1, 16 of 
our participants keep their phone at the arm+room level 
over 90% of the time the phone is on, with 13 of those at 
95% or above. The remaining participants have arm+room 
levels ranging from 44 to 89% and average 76%.  

For the 16 participants that keep their phones nearby almost 
all the time, it is unclear whether a prediction system is 
necessary for determining when the phone is nearby. With 
proximity rates of more than 90%, assuming the phone is 
nearby (arm+room) could be more accurate than many 
learned models of proximity. There are 7 users whose 
proximity at the arm level is 75% or greater, and the same 
statement can be made for them. 

Phone Proximity By Context 
Just as we were surprised by the lack of increase in 
proximity at the arm level with smart phones, we were also 
surprised that there was no difference in proximity between 
weekdays and weekends. There were some however, 
interesting differences in proximity at the arm level by 
location. Users were less likely to keep their phones within 
arm’s reach at home, work, places of leisure, and at friends’ 
residences. In contrast, they were more likely to keep their 

phones within arm’s reach while shopping, buying gas, and 
visiting with family. The difference between proximity 
from home to other locations defined and geo-located by 
our participants was 46 to 54%. From our interviews with 
our participants, we found that in places where they were 
most comfortable and familiar, they tended to leave their 
phones further away from them: close by so they could use 
them, but not within arm’s reach. As well, the 3 locations 
where phones were closer, tend to involve activities that 
allow for smart phone interaction during short idle periods.  

Similarly, we saw differences in proximity by time of day. 
While proximity at the arm+room level was independent of 
this factor, proximity at the arm level was not. Participants 
tended to have their phones closer during sleeping hours 
than during other hours (56 vs. 51%). This can partly be 
explained by the use of smart phones as an alarm clock. 
Users were also closer to their phones during the morning 
hours (7-9am). Participants explained that they used their 
phones to check email and other Internet resources shortly 
after waking up, and during their commute to work. The 
times with the lowest proximity are the work hours and the 
time at home after work and before sleeping. Combined 
with the location results just described, the lower proximity 
values are not surprising. Both differences in location and 
time of day offer opportunities for designers of mobile 
phone applications to use the phone as a proxy for the user 
and their environment, and for communicating with users. 

Predicting Phone Proximity 
We produced models of proximity that used contextual 
factors from phone sensors that could predict when the 
phone was within arm’s reach with 75% accuracy, and 
within arm+room with 83% accuracy. These models are not 
computationally intensive and can be executed quite easily 
on today’s smart phones. There was large variability in 
accuracy by users, and in the features that were most 
predictive. This implies that a single population model or a 
small number of population models (as suggested by Patel 
et al.) may not be possible. It is interesting that all the most 
predictive features are directly related to user activities, 
both those in the real world (e.g., movement) and those on 
the phone (e.g., phone usage as measured by battery level 
and temperature). Perhaps by collecting information on the 
active applications on the phone and using more 
sophisticated features related to user activity we can 
improve the accuracy of our models. Certainly by taking 
into account those that were almost always within the 
arm+room level, and combining with the predictive models 
(taking the maximum accuracy for each subject), we can 
reach an overall predictive accuracy of 92%. 

Limitations 
As with the original study, our study has some limitations. 
We studied a limited population (28) of smart phone users 
for a limited period of time (4 weeks). As such, it may be 
difficult to generalize these findings to other populations of 
smart phone users. We provide this detailed exploration of 
how smart phone users use their phones and their proximity 



 

 

to their phones to illustrate the challenges and opportunities 
for designers of phone applications looking to use the 
mobile phone as a proxy for user context and attention.  

One issue with our study was the amount of data we lost 
data due to issues with our data collection framework. We 
discovered that some of our participants had an automated 
task killer app on their phone. A task killer app removes 
processes (in our case, modules from our framework) that 
use up significant memory or CPU. This caused us to lose 
significant amounts of data (up to 54%, although most had 
data losses ~10% or lower) from some of our participants, 
until we identified the app and asked them to remove it. 
Another issue we did not account for was the amount of 
time the phone was off. While both we and the original 
paper report reasonably high proximity numbers from our 
studies, these numbers drop significantly when time when 
the phone is off is considered. Participants in our study had 
their phones off or our framework off 22% of the time. This 
results in our arm+room proximity to drop from 88% to 
69%, when taken into account. As off time can be 
considerable, especially for some users (e.g., paramedic, 
teacher, pregnant participant, foreign travel), off time needs 
to be considered when designing mobile applications that 
make assumptions about phone availability. 

CONCLUSION AND FUTURE WORK 
We have presented a field data collection-based study of 28 
smart phone users to understand whether their phones can 
serve as proxies for their context and availability. We found 
that when their phones are on, they are only within arm’s 
reach 53% of the time, but within arm+room 88% of the 
time. Based on these results, we build on the work of Patel 
et al., and show how mobile application designers can 
leverage smart phones as proxies for users’ environmental 
context, availability for delivering information and 
availability for accessing information. We demonstrate that 
we can reasonably predict user proximity with easily 
collected features about user activity, and when combined 
with knowledge about individual users and their normal 
proximity, we are very accurate (greater than 90%). In the 
future, we intend to collect and leverage additional features 
regarding activity and user context to further improve our 
predictive ability. We also will build this ability into mobile 
applications as a demonstration of its effectiveness. 
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