
Chapter 4: Data Collection & Methods

Our lives are not random. They certainly exhibit structure at all time-scales. How is this

structure organized? What are its atomic elements? What is the network of dependencies

connecting the past, present, and future moments? These are big questions, which we

cannot address completely. However, through a few guiding principles (which we

describe next) we can limit our analyses to an appropriate level-of-detail, thus enabling us

to reasonably tackle the above questions. Since these questions need hard data to produce

answers, we also address how to collect measurements of an individual's experiences and

describe how we overcame this hurdle.

When the detective tries to understand the mind of the criminal, he attempts to place

himself in the criminal's state of mind, duplicating the experiences and encounters that

the criminal might have had up to and including the scene of the crime. This makes it

possible for the detective to infer the missing pieces of evidence and perhaps predict the

criminal's next move. Mapping this intuition to the case of a computational agent (the

detective) and its user (the criminal), means that we should provide the computational

agent the same inputs the user is receiving so as to allow the agent to understand or

habituate to the experiences and thus perhaps predict future experiences of its user. This

implies that we use wearable sensors that are unobtrusively integrated into the user's

clothing. Furthermore, we will concentrate our efforts on sensors that parallel biological

perception: vision, audition, and vestibular. Lastly, we must be able to capture the

subject's experiences for as long as is reasonably possible. First-person, long-term sensor

data is a guiding principle for our overall approach.

The second principle guiding this work is the use of peripheral or context-free perceptual

methods. The definition of a context-free method is an algorithm or system that is

effective in any context, thus independent of lighting, background auditory conditions,



etc. Context-free methods generally rely on global features such as color histograms or

optical flow in vision and spectrograms and peak tracking in the audio to provide useful

descriptions of the raw sensor data. Thus if we have a speech detection module that

operates robustly in most conditions, we can include it as a context-free perceptual

method. Contrast this with the use of attentive or context-specific perceptual modules,

such as today's state-of-the-art speech recognizers [55] [56] [7] [20] or face recognition

systems [35] [53] that require knowledge of the current context in order to operate.

The third guiding principle of this work owes its inspiration to insect-level perception. It

is inappropriate given the current state of the art to tackle the problem of how to give a

machine human's level understanding of an individual's daily behavior without first

granting it with an insect's level of understanding. Perhaps in certain cases, we can obtain

near-human understanding by severely restricting the domain. However, in this work the

completeness of the domain, that is an individual's day-to-day life, is a priority and hence

we are guided to the more appropriate level of perception portrayed by insects. Similar to

the representation-free approach of Rod Brooks, we avoid building complete models of

the user's environment and instead rely on the redundancies in the raw sensor data to

provide the structure. This philosophy implies the use of coarse level features and

emphasizes robustness over detail (such as in the use of context-free methods over

context-specific methods).

In this work we took a straightforward approach to addressing the issues of a similarity

metric and temporal models of life patterns. We collected long-term sensor measurements

of an individual's activity that enables the extraction of atomic elements of human

behavior, and, the construction of classifiers and temporal models of an individual's day-

to-day behavior. I will describe this data set and then describe in more detail methods for

building coarse descriptions of the world, and thus a similarity metric. Last, we describe

methods for extracting temporal models based on these coarse event descriptions.



4.1 The I Sensed Series: 100 days of experiences*

The first phase in statistically modeling life patterns is to accumulate measurements of

events and situations experienced by one person over an extended period of time. The

main requirement of learning predictive models from data is to have enough repeated

trials of the experiment from which to estimate robust statistics. Experiential data

recorded from an individual over a number of years would be ideal. However, other

forces such as the computational and storage requirements needed for huge data sets

force us to settle for something smaller. We chose 100 days (14.3 weeks) because, while

it is a novel period for a data set of this sort, its size is still computationally tractable

(approx. 500 gigabytes).

* The term "I Sensed" comes from a piece of historical conceptual art that has played a part in inspiring this

thesis. In the 70's there was a Japanese conceptual artist named Kawara On [26] 0. Kawara, On

Kawara: date paintings in 89 cities, Museum Boymans-Van Beuningen, Rotterdam,

1992., who was in a way obsessed with time and the (usually) mundane events that mark its passage. His

works such as the I Met and I Went series explored the kind of day-to-day events that tend to fall between

the cracks of our memories. For years, everyday Mr. On would record the exact time he awoke on a

postcard and send it to a friend or create lists of the people he met each day or trace on maps where he went

each day. Other relevant works are his I Got Up At, I Am Still Alive, and the I Read series. His work raises a

few interesting questions. If we had consistent records of some aspects of our day-to-day lives over a span

of a lifetime, what trends could we find? What kinds of patterns or cycles would reveal themselves?

Interestingly, we wouldn't need highly detailed memories to find these trends and patterns, just a consistent

sampling in time. One of my dreams is to build a device that can capture these life patterns automatically

and render them in a diary-like structure.



Figure 4-1: The Data Collection wearable when worn.

The wearable was worn from mid-April to mid-July of 2001 by the author. Refer to

Figure 4-5 for actual excerpts from this data set during 4 example situations: eating

lunch, walking up stairs, in a conversation, and rollerblading.

We designed and followed a consistent protocol during the data collection phase. Data

collection commences each day from approx. 10am and continues until approx. 10pm.

This varies based on the sleeping habits of the experimental subject. The times that the

data collection system is not active or worn by the subject is logged and recorded. Such

times are typically when: batteries fail, sleeping, showering, and working out.

In addition to the visual, aural, and orientation sensor data collected by the wearable, the

subject is also required to keep a rough journal of his high-level activities to within the

closest half hour. Examples of high-level activity are: "Working in the office", "Eating

lunch", "Going to meet Michael", etc. while being specific about who, where, and why.

Every 2 days the wearable is "emptied" of its data, by uploading to a secure server.

Persons who normally interact with the subject on a day-to-day basis and have a

possibility of having a potentially private conversation recorded are asked to sign a

consent form in which we formally agree to not disclose recordings of them in anyway

without further consent. This way my data collection experiments were in full accordance

with the Massachusetts state laws on recording audio & video in public.



DATA COUCTONWEARAKE.

Figure 4-2: Comparison of the field-of-view for the common household fly and the data collection
wearable used in the I Sensed series.

4.1.1 The Data Collection Wearable

The sensors chosen for this data set are meant to mimic insect senses. They include visual

(2 camera, front and back), auditory (1 microphone), and gyros (for 3 degrees of

orientation: yaw, pitch and roll). These match up with the eyes, ears, and inner ear

(vestibular), while taste and smell are not covered because the technology is not available

yet. The left-right eye unit placement on insects differs from that front-back placement of

the cameras in our system. However, they are qualitatively similar in terms of overall

resolution and field-of-view (see Figure 4-2). Other possibilities for sensors that have no

good reason for being excluded are temperature, humidity, accelerometers, and bio-

sensors (e.g. heart-rate, galvanic skin response, glucose levels). The properties of the 3

sensor modalities are as follows (see Figure 4-4):

Audio: 16kHz, 16bits/sample (normal speech is generally only understandable for persons

in direct conversation with the subject.)

Front Facing Video: 320x240 pixels, 10Hz frame rate (faces are generally only

recognizable under bright lighting conditions and from less than lOft away.)

Back Facing Video: 320x240 pixels, 10Hz frame rate (faces are generally only

recognizable under bright lighting conditions and from less than lOft away.)



Orientation: Yaw, roll, and pitch are sampled at 60Hz. A zeroing switch is installed

beneath the left strap that is meant to trigger whenever the subject puts on the wearable.

Drift is only reasonable for periods of less than a few hours.

The wearable is based on a backpack design for comfort and wardrobe flexibility. The

visual component of the wearable consists of 2 Logitech Quickcam USB cameras (front-

and rear-facing) modified to be optically compatible with 2000 field-of-view lenses

(adapted from door viewers). This means that we are recording light from every direction

in a full sphere around the user (but not with even sampling of course). The front-facing

camera is sewn to the front strap of the wearable and the rear-facing camera is contained

inside the main shell-like compartment. The microphone is attached directly below the

front-facing camera on the strap. The orientation sensor is housed inside the main

compartment. Also in the main compartment are computer (PIII 400Mhz Cell Computer)

with a 10GB hard drive (enough storage for 2 days) and batteries (operating time: -10

hrs.). The polystyrene shell (see Figure 4-1) was designed and vacuum-formed to fit the

components as snuggly as possible while being aesthetically pleasing, presenting no

sharp corners for snagging, and allowing the person reasonable comfort while sitting

down.

Since this wearable is only meant for data collection, its input and display requirements

are minimal. For basic on/off, pause, record functionality there are click buttons attached

to the right-hand strap (easily accessible by the left-hand by reaching across the chest).

These buttons are chorded for protection against accidental triggering. All triggering of

the buttons (intentional or otherwise) is recorded along with the sensor data. Other than

the administrative functions, the buttons also provide a way for the subject to mark

salient points in the sensor data. The only display provided by the wearable is 2 LEDs,

one for power and the other for recording.



4.1.2 The Data Journal

Organizing, accessing, and browsing such a large amount of video, audio, and gyro data

is a non-trivial engineering task. So far we have a system that allows us to fully transcribe

the "I Sensed" series and to access it arbitrarily in a multi-resolution and efficient

manner. This ability is essential for learning and feature extraction techniques talked

about later in this paper. All data (images, frames of audio, button presses, orientation

vectors, etc.) are combined and time synchronized in our data journaling system to

millisecond accuracy (see Figure 4-3).



Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

10am 11am 12pm 1pm 2pm 3pm 4pm bPm

Figure 4-3: The Data Journal System: provides a multiresolution representation of the time-synchronized sensor data.



The Data Collection Wearable

gyros rear camera

button
interface
board

Pill 500MHz
Cell Computer
& 10GB HDD

Sony Infolithium
Batteries

rear
camera
lens

front
camera

buttons

microphone

Figure 4-4: The Data Collection Wearable Schematic
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Figure 4-5: Some excerpts from the "I Sensed" series
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Chapter 5: The Similarity Measure

Before we can answer any of the questions about classification, prediction or clustering,

we first need to determine an appropriate distance metric with which to compare

moments in the past. We will look at how to determine what are the appropriate intervals

to be comparing and how to quantify their similarity. While doing so we present new

methods for data-driven scene segmentation. We will then present methods for

determining the similarity of pairs of moments that span time-scales from seconds to

weeks. The tools we build up in this chapter provide the foundations for classification

and prediction.

5.1 The Features

The first step in aligning sensor data is to decide on an appropriate distance metric on the

sensor output. Possibly the simplest similarity measure on images is the L1 norm on the

vectorized image. Computer vision researchers typically avoid using such a simple metric

because of its vulnerability to differences in camera position and orientation and opt

instead for orientation-invariant representations, such as color histograms or image

moments. However, as mentioned before there is clear evidence [54] that insects (and in

many cases humans) store view-dependent representations of their surroundings for later

recall and matching. In this case the dependency of the image and the camera position

and orientation is an advantageous one. Throwing away the information that links an

image to the state of the camera at the moment of capture doesn't make sense when the

task is to situate the camera wearer.

There is an interesting side-note on the choice of the exponent in the Minkowski metric.

Researchers in biological perception have noticed repeatedly that simple creatures such

as insects (particularly bees) appear to use an Li norm on visual discrimination tasks, but

as the creature gets more complex (say humans) they discretely switch between the L1


