

Toolkit to Support
Intelligibility in Context-Aware Applications

Brian Y. Lim, Anind K. Dey
Human-Computer Interaction Institute

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213

{byl, anind}@cs.cmu.edu

ABSTRACT
Context-aware applications should be intelligible so users
can better understand how they work and improve their
trust in them. However, providing intelligibility is non-
trivial and requires the developer to understand how to
generate explanations from application decision models.
Furthermore, users need different types of explanations and
this complicates the implementation of intelligibility. We
have developed the Intelligibility Toolkit that makes it easy
for application developers to obtain eight types of
explanations from the most popular decision models of
context-aware applications. We describe its extensible
architecture, and the explanation generation algorithms we
developed. We validate the usefulness of the toolkit with
three canonical applications that use the toolkit to generate
explanations for end-users.

Author Keywords
Context-awareness, intelligibility, explanations, toolkits.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Algorithms, Human Factors.

INTRODUCTION
Context-aware applications [11] make use of sensed inputs
and contexts, coupled with intelligent decision-making, in
order to automatically and calmly [43] adapt to serve users
better. However, the implicit nature of context sensing, and
the growing complexity of models (e.g., rules, hidden
Markov models) underlying context-aware applications
make it difficult for users to understand them (e.g., [42]).
This can frustrate users [4], and cause them to lose trust in
the applications [29]. To counter this, it is important to
make context-aware applications intelligible [5, 25, 26] by
automatically providing explanations of application

behavior. In fact, this has been done in applications from
other domains (e.g., recommender systems [20], end-user
debugging [22], user interfaces [30], user modeling [10]),
and been found to improve user trust and acceptance of
these applications.

Several reviews have shown that users desire a wide range
of explanations (e.g., [17, 23, 26, 27]) and specifically, Lim
& Dey [25] describe a set of ten explanation types that
context-aware applications should provide for end-users.
The already challenging task of generating some
explanations from applications is made more challenging
with this requirement for many explanation types. In this
work, we designed and implemented the Intelligibility
Toolkit that automatically generates explanations from
models at the infrastructure level, so application developers
do not have to derive explanations themselves.

Our contributions are:

(1) An architecture for generating a wide range of
explanations drawn from Lim & Dey [25], including Why,
Why Not, How To, What, What If, Inputs, Outputs and
Certainty. Our current implementation extends a popular
toolkit for building context-aware applications [11, 13] and
supports the four most popular model types (rules, decision
trees, naïve Bayes, and hidden Markov models).

(2) A library of reference implementations of explanation
generation algorithms we developed to extract any of the 8
explanation types from any of the four models we support.

(3) Automated support for the recommendations from
[25] that promotes good design practice by making the most
contextually appropriate explanations easy for developers to
acquire. Applications can automatically obtain the most
appropriate explanations given the contextual situation.

As we will show, these contributions satisfy the
requirements laid out by Olsen for adding value to user
interface architectures [32]: (i) importance, (ii) problem not
previously solved, (iii) has generality across a range of
explanation types and decision model types, (iv) reduces
solution viscosity through increased flexibility for rapid
prototyping of explanations, (v) empowers new design
participants by making it easier to provide explanations,
and (vi) demonstrates power in combination by supporting
combinations of explanation types as building blocks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UbiComp 2010, September 26–29, 2010, Copenhagen, Denmark.
Copyright 2010 ACM 978-1-60558-843-8/10/09...$10.00.

13

The paper is organized as follows: we review context-aware
applications published in recent years from a number of
premier conferences to ascertain the most popular decision
models. Then we present a discussion of the explanation
types we seek to provide. Next, we describe the
Intelligibility Toolkit and how it provides explanations for
context-aware applications. We detail the explanation
generation algorithms we developed for the four most
popular decision models. We validate the toolkit through
demonstration applications and the application of Olsen’s
infrastructure guidelines. We then discuss other toolkit
features that would be valuable to support, and compare the
toolkit with related work. We end with discussing
opportunities for new research given the toolkit.

REVIEW OF DECISION MODELS USED IN CONTEXT-
AWARE COMPUTING
We sought to learn what the most popular context-aware
decision models are so that we could support these in the
Intelligibility Toolkit. We reviewed literature from three
major conferences over at least five years: CHI 2003-2009,
Ubicomp 2004-2009, and Pervasive 2004-2009. We found
that there were four popular models among the 114 context-
aware applications reviewed: rules, decision trees, naïve
Bayes, and hidden Markov models (see Figure 1). We
found some use of Support Vector Machines, and clustering
techniques (e.g, k-Nearest Neighbor), but not substantial.

Rules: We classify applications as rule-based if the authors
state that their applications were based on rules (e.g., if/else
logic), or that they were based on simple mapping
associations of IDs to entities (e.g., RFID). Developer
specified rules are the most popular decision models used in
context-aware applications. They are popular in the
following domains: activity recognition (e.g., [41]),
adaptation / personalization (e.g., [40]), awareness /
monitoring (e.g., [12]), reminders (e.g., [6]), location guides
(e.g., [31]), and persuasion (e.g., [16]). Also, the number of
rule-based toolkits for context-aware applications indicates
the popularity of rules (e.g., [1, 3, 13, 18]).

Decision tree classifiers (e.g., [35]) learn a tree from a
dataset. A decision tree infers an output by deciding on a
specific input feature at each node as it traverses down and
returns a decision once it reaches a leaf. Decision trees are

popular for their simplicity of use, interpretability, and good
runtime performance. Decision trees are popular in
applications to recognize: identity / ability (e.g., [8]),
interruptibility (e.g., [2, 42]), mobility (e.g., [45]), etc.

Naïve Bayes is a probabilistic classifier that applies Bayes
theorem to model the probability of the output of a system
given the inputs. It applies a naïve assumption that features
are conditionally independent of one another. Training and
runtime performance are fast. Naïve Bayes classifiers have
been used to recognize: physical activity (e.g., [9]),
domestic activity (e.g., [39]), interruptibility (e.g., [42]).

Hidden Markov models (HMM) [36] are Bayesian
probabilistic classifiers that model the probability of a
sequence of hidden states given a sequence of observations
(input features with respect to time). First-order Markov
models assume that only the previous state affects the next,
and only the current state influences the current
observation. HMMs have been used to model: physical
(e.g., [9]) and domestic activity (e.g., [21]), gaze (e.g., [7]).

Several applications also combine rules for higher level
logic with classifiers for lower level recognition (e.g., [16]).

INTELLIGIBILITY AND EXPLANATION TYPES
As we focus on these four decision models, we need to
generate the various explanations that users want to receive.
Lim et al. [25, 26] enumerated ten explanation types that
are important to end-users of context-aware applications,
and in this work we provide mechanisms to automatically
extract eight of them from the applications. We review the
different explanation types and their definitions.

Model-independent explanation types
If we represent a context-aware application as sensing
inputs, maintaining system state, and producing an output,
we can identify a set of explanations that are independent of
the decision model and how it makes its decisions.

Inputs explanations inform users what input sensors (e.g.,
thermostat, GPS coordinates) and information sources (e.g.,
weather forecast, restaurant reviews website) that the
application employs so that users can understand its scope.
Inputs should be described by their name and possibly also
with some description of what they mean or refer to.

Outputs explanations inform users what output options the
application can produce. This lets users know what it can
do or what states it can be in (e.g., activity recognized as
one of three options: sitting, standing, walking). This helps
users understand the extent of the application’s capabilities.
Outputs explanations can also be used to help ask model-
based explanations Why Not and How To (see below) by
allowing the user to select an alternative desired output.

What explanations inform users of the current (or previous)
system state in terms of output value; this makes the
application state explicit. Input values are obtained by
recursively asking What on the Inputs. When a user asks a
why question, she may actually be asking for What.

Figure 1: (Left) Counts of model types used in 109 of 114

reviewed context-aware applications. (Right) Counts for 50
recognition applications; classifiers are used most often for
applications that do recognition. Key: decision tree (DT), naïve
Bayes (NB), hidden Markov models (HMM), support vector machines

(SVM), k-Nearest Neighbor (kNN).

0
10
20
30
40
50
60
70

R
u
le
s

D
T

N
B

H
M
M

SV
M

kN
N

All Apps

0

5

10

15

R
u
le
s

D
T

N
B

H
M
M

SV
M

kN
N

Recognition Apps

14

What If explanations allow users to speculate what the
application would do given a set of user-set input values.

Model-dependent explanation types
Explanations regarding the mechanism of the decision
making process in the application are model-dependent, and
would vary depending on the model used.

Why explanations inform users why the application derived
its output value from the current (or previous) input values.
For rule-based systems, this returns the conditions (rules)
that were true such that the output was selected.

Why Not explanations inform users why an alternative
output value was not produced given the current input
values. They could provide users with enough information
to achieve the alternative output value, but not necessarily
so (e.g., see the naïve Bayes explanation algorithm later).

How To explanations answer the question "In general, how
can the application produce alternative output value X?"
This is in contrast to asking when a specific event occurs.

Certainty explanations inform users how (un)certain the
application is of the output value produced. They help the
user determine how much to trust the output value.

We omit explaining about the Situation because it is
domain specific and independent of application behavior.
We omit explaining Control because this is already covered
by Enactor Parameters [13].

INTELLIGIBILITY TOOLKIT
We have presented the four most popular context-aware
decision model types, and laid out eight explanation types
that are important for context-aware applications to provide.
Here we describe the Intelligibility Toolkit that supports the
automatic generation of these explanation types from these
decision models. Context-aware applications built with the
toolkit freely receive the capability of providing these
generated explanations to end-users. The toolkit is designed
to satisfy requirements inspired from Olsen's writings about
infrastructure evaluation [32]:

R1) Lower barrier to providing explanations. With the
toolkit, application developers do not need to know how to
generate explanations from the most popular models used in
context-aware applications. Explanation generation
algorithms and heuristics are encapsulated into the toolkit.

R2) Flexibility of using explanations. Given the simplicity
of invoking various explanation types, all types can be
generated with the same level of ease. Developers can then
concentrate on choosing the most suitable explanation for
their applications and users. This supports rapid prototyping
of providing explanation solutions to see which works best.

R3) Facilitate appropriate explanations automatically.
Even with this rapid prototyping support, we encourage the
use of appropriate explanations, particularly following the
recommendations from Lim & Dey [25] of how different
explanation types are more appropriate in various contexts.

R4) Support combining of explanations. Some explanation
types depend on other types to give a complete explanation
to the user. For example, a Why Not explanation needs to
inform the user of the set of Output values so that she
would ask only about what is possible in the application.
Other than nesting explanations, explanations can also be
combined to enhance user experience. For example,
combining the How To and What If explanations can
expedite users in finding good examples to learn how an
application works (see Figure 7, right).

R5) Generalizability across (a) explanation types; (b)
decision model types; and, (c) explanation provision.
Although the toolkit currently covers a range of eight
explanation types, four popular decision models and
methods for simplifying and presenting explanations, like
any toolkit, it is not comprehensive. The toolkit can be
extended to support (a) new explanation types and new
methods to explain the supported models (e.g., competing
methods to explain naïve Bayes are presented in [28, 34,
37]); (b) new model types (e.g., SVM, clustering) as long as
explanation generation algorithms can be developed for
them; and (c) new ways to present explanations.

Architecture
The Intelligibility Toolkit (Figure 2), implemented in Java,
leverages mechanisms in the Enactor framework [13] of the
Context Toolkit [11]. Enactors contain the application logic
of the context-aware application and contain References
that monitor the state of input Widgets. Each Reference
contains a rule and is triggered when its rule is satisfied.
This is managed automatically by the discovery mechanism
of the Context Toolkit.

We added an output property and a list of its values for the
Enactor to represent its output value, and output options.
Each output value is associated with a Reference.

Extension to support classifiers
As it was previously purely rule-based, we extended the
Enactor framework to also support machine learning

Figure 2: Architecture for handling rules and classifiers. The

Intelligibility Toolkit adds four components to the Enactor
framework of the Context Toolkit. Users ask for explanations with

Querier, and invoke Explainer to generate explanations. The
explanations may be simplified with a Reducer, and rendered

through a Presenter.

Enactor
(application logic)

Output
Value

ServiceReference

Widget

Widget

Widget

Context
Inputs

Context
Output

Output
Value

ServiceReference

Widget

Widget

Widget

PresenterReducer

Output
Action

Querier

Why Why Not How To What If

Inputs Output Certainty What Context
Intelligibility

Explainer

15

classifiers. In a classifier-based set up, multiple References
can be associated with a classifier, but each Reference is
associated with a different output value. Each Reference is
triggered when the classifier classifies the Widget state as
the Reference’s associated output value. We used Weka
[19] for the decision tree and naïve Bayes classifiers, and
Jahmm [15] for HMM classifiers.

Modifications to extend Intelligibility
Next, we describe four components we added to the Enactor
framework to support a wider range of intelligibility (see
architecture diagram in Figure 2).

Explainer
This is the main component of the Intelligibility Toolkit
that contains the mechanisms and algorithms to generate
explanations based on the decision model. There is a
generic Explainer that generates explanations for
model-independent types, and subclasses of Explainer for
each of the four decision models supported (see next
section on Explanation Generation Algorithms). While we
have implemented one Explainer per model, additional
Explainers can be developed to support other types of
models we have not covered, and also to generate different
explanation methods for existing model types. For example,
we implemented the weights of evidence method from [34]
to explain Bayesian models (naïve Bayes, HMM), but there
are other explanation methods that could also provide
different explanations, e.g., [28, 37]. The use of Explainers
and their standardized programming interfaces supports
requirements R1 and R2. The creation of new Explainers
for models or explanation types to plug into the toolkit
supports R5a and R5b, respectively.

Explanation Struct (Expression)
We define an explanation in terms of one or multiple
reasons (e.g., multiple reasons for Why Not). Each reason
can be a singular conditional (e.g., one certainty value for a
Certainty explanation) or a conjunction (e.g., multiple
conditionals for a Why explanation). The conditional is the
atomic unit of an explanation (e.g., certainty=90%,
temperature<24°C). Furthermore, there can be negated
conditionals (e.g., not temperature≥24°C). Formally, we
define explanations in Disjunctive Normal Form (DNF), i.e.
a disjunction (OR) of conjunctions (ANDs) of conditionals
(see Figure 3; see example in Figure 4). The standardization
of explanation information supports R4 such that there is a
standard way to pipe and feed different explanation types.

BestExplanationAdapter
We support requirement R3 by providing the
BestExplanationAdapter component. It takes in the
current context of the application (e.g., appropriateness, and
criticality) and returns the most suitable explanation types
(e.g., providing Why Not explanation of the second likeliest
inference when the system accuracy is below a threshold).

Querier
While some explanation types (Inputs, Outputs) are
constant once the application and model are defined and do

not depend on events or instances, other types depend on
what happened and what the user is asking. The base
Querier takes the current inputs and output values and is
used for explanation types What, Why, and Certainty.
AltQuerier extends Querier and includes an alternative
target output value to facilitate explanation types Why Not,
and How To. UserInputsQuerier extends Querier and
allows the setting of input values, supporting What If
explanations. Queriers can be extended to employ different
constraining mechanisms, such as querying based on time.
Formally, they allow explanations to be constrained (e.g., to
convert How To to Why) allowing for different explanation
types to be supported (requirement R5a).

Reducer
Explanations generated from Explainers may be unwieldy
to an end-user in two ways: (i) too many reasons (e.g.,
numerous ways to achieve a target output value), and (ii)
each reason being too long (e.g., numerous inputs with
required values to cause the output value). The latter case
occurs when many sensors and feature values are used to
build the models, as is the case for accurate learned
systems. Reducer components simplify the Explanation
Struct so that the explanation is more interpretable to users.
To reduce the number of reasons, we implemented two
types of DisjunctionReducers: FirstDReducer
that just takes the first conjunction in the order of
disjunctions of the explanation, and ShortestDReducer
selects the shortest conjunction reason. To reduce the length
of each reason, we implemented two types of
ConjunctionReducers: TruncationCReducer
that just truncates the conjunction reason to a specified
length (e.g., 7 conditionals), and AttributeCReducer
that filters out from the conjunction all conditionals except
those about a specified set of Widget Attributes. These
attributes can be application-specific, being most salient to
the application, most easily understood by users, or most
privacy preserving. Reducers support requirement R5c by
being extensible to support other heuristics.

Presenter
Even if the explanation is large, a developer may elegantly
present it (e.g., see Figure 7), instead of reducing it.
Explainers produce explanations in the form of Explanation

Figure 3: Schematic of explanation in Disjunctive Normal Form

(DNF), and UML diagram of Explanation Struct format to
programmatically represent explanations.

…

… … …

Output

=
Conditional
Negated Conditional

= OR, = AND

16

Structs, and Presenters render them in a form
presentable to end-users, e.g., as text, visualization, or
interactive graphical interface. Developers can build
different Presenters to suit their target user and device form
factor (requirement R5c).

We provide the reference implementation
RulesTextPresenter that takes an Explanation Struct
from the RulesExplainer and creates a text-based
presentation based on templates (e.g., see Figure 7).
Explanations can also be presented to system components
rather than to end-users. EvidenceJsonPresenter
converts an Explanation Struct into JavaScript Object
Notation (JSON) and posts it via a HTTP server call so that
a remote client may consume the explanation.

A Presenter can also deal with combining explanations,
such as presenting Certainty information with a Why
explanation, showing Inputs for the What If explanation, or
showing Output values for the Why Not and How To.

EXPLANATION GENERATION ALGORITHMS
We describe specific algorithms we developed to generate
explanations from the four decision models that the
Intelligibility Toolkit currently supports. Some explanation
types are model-independent, and are supported by the
generic Explainer. We describe the model-independent
explanations first. Inputs explanations report the name and
definition property of each context type (Widget attribute)
used in the application. Outputs explanations report a List
of output values for Enactor. What explanations report the
current Enactor output value. To obtain input values (Input
What explanations), handles for the input contexts are
obtained via the Input explanation, and through those, the
What explanation. A What If explanation sets input context
values set by the user (through UserInputsQuerier),
and tests it on all References. It reports the output value
associated with the Reference that gets triggered. Model-
specific explanations are generated from different
Explainers for each model. Due to space constraints, our
proofs are brief, but provide enough detail for replicability.

RulesExplainer
The Enactor framework supports one rule per Reference
and we enforce one Reference per output. A decision model
with multiple output values would have multiple rules, one
per value. We make rules explainable by converting them
into DNF by recursively applying De Morgan's Law,
double negative elimination, and the distributive law. To
explain how each explanation type is generated, we shall
use the set up described in Table 1.

Why explanation
This explanation selects the rule(s) that was satisfied to
produce the actual output (e.g., see Figure 4, top). Note that
multiple rules may be simultaneously satisfied.

Why Not explanation
This explanation selects rules that would achieve the target
output value and, for each trace, identifies unsatisfied

conditionals and returns a disjunction of traces containing
these conditionals (Figure 4, bottom).

How To explanation
This explanation returns the DNF of the rule that achieves
the target output, where each trace is a rule of how to
achieve the target output value (Figure 4, bottom).

Certainty explanation
Enactor rules currently do not compute uncertainty, though
uncertainty in inputs can be propagated descriptively.

Input Conditionals Output Values
a: Activity = Sitting
b: Noise = Quiet
c: Latitude near Office's
d: Longitude near Office's
e: Schedule = In Meeting

: Availability = Yes
: Availability = Somewhat Not
: Availability = Not

Table 1. Pedagogical example of input conditionals and output
values for rule and decision tree. This describes an application to

infer a user's availability based on his activity, the noise level around him,
his proximity to his office (by latitude, longitude), and his schedule.

Input state (a, ¬b, ¬c, d, ¬e): user is sitting in a noisy place at latitude
not near the office, longitude near the office, and is not in a meeting.

Figure 4: Generating explanations from Rules in DNF.

Why available ()? Because the user is sitting (a), is located at latitude
not near his office (¬c), and is not in a meeting (¬e).

Why Not unavailable ()? Because he isn't near his office by latitude
(c), or isn't in a meeting (e).

How To infer unavailable ()? He needs to be near his office by
latitude (c) and longitude (d); or be in a meeting (e).

Figure 5: Generating from Decision Trees.

Why available ()? Because the user is sitting (a), is not located at
latitude near his office (¬c), is located at longitude near his office (d), and
is not in a meeting (¬e).

Why

¬

a b

e

c d

a

¬e

¬c

a

¬e

¬d

b

¬e

¬c

b

¬e

¬d

e

c d

c

d

e

Why Not

c

d

e

How To

a

cb

d

 e

a b ec d

Why

a

¬d

¬c

a

d

¬c

¬e

a

d

¬c

e

¬a

b

Why Not

a

d

¬c

e

¬a

b

How To

17

J48Explainer (for Decision Tree)
This explainer generates explanations from the Weka [19]
J48 implementation of the C4.5 decision tree [35]. There
are some differences between decision trees and Enactor
rules. Decisions for inferring the output are made from the
top down, instead of from the bottom up as for rules; and
decision trees encode traces for multiple output values
within a single tree, unlike a rule-based structure. So DNF
rules are created by traversing all paths in the tree and
grouping paths by output values at their leaves. In DNF, we
can generate explanations in the same way as for rules.

Why explanation
For every classification of an instance, the tree traces a
single path to produce a Why explanation (Figure 5, top).

Why Not, and How To explanations
We retrieve the disjunction of traces that result in the target
output value, then apply respective techniques as for rules.

Certainty explanation
Decision trees are built from statistical data, so they can
model certainty from the probability distribution of
remaining data points at each leaf.

NaiveBayesExplainer
To explain the naïve Bayes classifier, we extend the idea of
weights of evidence demonstrated in [34] to multi-class
problems. This approach explains additive classifiers by
calculating an evidence score of how an instance is
classified as a certain class value. If the score is positive,
the classifier infers the class value, otherwise it infers
another class value. The evidence can be decomposed
linearly into its constituent evidences, indicating how much
each feature contributes to the inference.

We start with the posterior probability that class is
inferred from a set of class values given the observed
instance feature input values :

 | | , , , ∏ |

where f is a feature of possible values. The probability is
calculated from the prior probability that a class would be
in, , and the conditional probabilities of each feature
value given the class, | . is inferred over other class
values when , . Since this is
true for all class values, we can multiply all iterations of
this inequality to get a combined expression:

∏ ∏ .

Taking a logarithm gives us the evidence for the inference

 g ∏ ∏ ∑ 0

For brevity, we omit our working to derive the expression

g , h f (1)

where h and ∑ ,
f , | and ∑ | .

Naïve Bayes can be explained as the sum of evidence:
1. Prior probabilities of selected class value, h
2. Due to each feature value, f ,

See Figure 6 for an illustrative use of this explanation.

Why explanation
Why explanations are given in terms of weights of evidence
of contributing factors and the total evidence, g. In this
case, these factors are the predisposition, h, (prior
probabilities) and the feature evidence, f, for each input.

Why Not explanations
Suppose the user is interested in an alternative target class
value, ′, that was not inferred. We compute the evidence
for the difference between the actual and target class values
through a pairwise comparison, and knowing

′ . The evidence of why was inferred over ′ is

∆g , ′, g , g ′, 0 (2)

How To explanation
This shows weights of all features due to normalized values
of the features, so the user can make sense of the general
impact of each feature. (i) For nominal features, they only
take a value of 0 or 1, so their evidence will either be 0 or f.
(ii) For naïve Bayes, numeric features are commonly
modeled by the Normal distribution; we "normalize"
numeric features to a value of one standard deviation, | ,

from the feature mean given the class value: | | .

Figure 6: Why Not (Left), and How To + What If (Right)

explanations for a mobile phone physical activity recognition
application using accelerometer data trained with a naïve Bayes
classifier. The application has inferred that the user is Sitting.

How to read Why Not: The top bar indicates the average evidence
∆g 0, i.e. more evidence for Sitting than Standing. The next bar indicates
the evidence due to prior probabilities ∆h 0 is in favor of Standing (i.e.
user is more likely to be standing). Each of the following bars indicates the
difference in evidence for each feature, ∆f, and whether they are in favor of
Sitting or Standing.

Why Not inferred Standing but Sitting? Because (i) the prior
likelihood indicates that it is pre-disposed to inferring Standing rather than
Sitting, (ii) the values of Mean(x), Mean(y), Energy(x), Energy(y), etc,
support the inference for Sitting, while (iii) the values of Mean(z),
Energy(z), etc, support the inference for Standing. The user can interpret
that the z-axis could be instrumental to infer Standing.

How To + What If explanation: User selects values of inputs, and see
how the corresponding evidence changes along with the average overall
evidence (bar at top), to see if the threshold (vertical bar) is crossed.

Beatri
ce

Camero
n

Evelyn

≠ Standing @ Feb 27 09:46 Why Not?

Mean(x)

Mean(y)

Mean(z)

Energy(x)

Energy(y)

Energy(z)

SittingStanding

=

=

=

=

=

=

75.0

38.0

–10.0

13.0

3.0

1.0

Prior Likelihood

Beatri
ce

Camero
n

Evelyn

→ Walking @ Feb 27 09:46 How + What If?

Mean(x)

Mean(y)

Mean(z)

Energy(x)

Energy(y)

Energy(z)

WalkingNot

=

=

=

=

=

=

35.6

0.2

70.8

–8.3

10.4

10.4

Prior Likelihood

18

In terms of what the user can do with input values to get a
desired target output, if all values are nominal, we can
permute all combinations and return those that achieve the
target output. If multiple inputs are numeric, this becomes
intractable. Instead, we could use a How To If explanation.

How To If explanation
This provides a tractable form of How To explanations (for
nominal and numeric features) by constraining all feature
values except one. For a numeric feature that is not fixed,
we can vary the input value as it deviates from the mean
and determine the threshold at which the outcome is
achieved (or fails, if it is the opposite relation). A
generalization of this with increased interactivity is the
How To + What If explanation.

How To + What If explanation
One way to help users appreciate the influence of each
weight is to allow users to speculate on the outcome with
selected feature values. The What If explanation supports
this, but does not necessarily start with sensible values to
help users learn. The How To + What If explanation starts
with the target class value, ′, and provides a set of mean
feature values that satisfies this output, | . The user can
then tweak the feature values to see if the target output
value would still be inferred (Figure 6, right).

Certainty explanation
This reports the probability of inference, .

HMMExplainer (for Hidden Markov Model)
We apply the weights of evidence approach as used for
naïve Bayes, additionally considering temporal factors.
Once an HMM is learned (parameters , , determined),
inference of the state sequence is made by calculating its
probability given an observation sequence

 ∏ | ∏ |

where , 1, , 1, is a state of possible
states at time , in a sequence of length , and is the
observation at that time. Taken together, the states represent
a sequence , 1, . The probability is calculated
from the prior probability that a state would be in, ,
the transition probabilities between the states, | ,
and the emission probabilities of the observations given the
states | . For detailed information on HMMs, refer to
[36]. While class and state refer to the same thing, we use
the terminology consistent with HMM literature.

 is inferred over other states when | ,
. Now, if we multiply this equation with all

permutations of , we get ∏ ∏ | .
Taking a logarithm gives us the evidence for the inference

 g log ∏ log ∏ | ∑ 0

At this juncture, we point out that we would like to present
the evidence as a sum of feature evidences, instead of each
observation as a whole. Viewing evidences in terms of full

permutations of observations may be too difficult for end-
users to assimilate. To do so, we make the naïve assumption
(similarly used in naïve Bayes) that features are
conditionally independent of one another given any state:

, , … , ∏ .

Where is the value of feature of the observation at
time , and there are features. With some working we get

g , , h u f (3)

where

h log ℋ, and ℋ ∑ log ,

u , log , and

∑ log,
, ,

f , , log ℱ, and

ℱ ∑ log .

So, with the naïve assumption of independence among
features, an HMM can be explained as the sum of evidence:
1. Prior probabilities of selected state, h
2. Due to each state transition, u ,
3. Due to each feature value at sequence step, f , ,

We now have terms due to time, and the evidence for
features are two-factored including time dependency. See
Figure 8 for a demonstration of this explanation. Note that
when 1, then we just have the naïve Bayes explanation.

Inputs and What If explanation
Though not formally an input, these explanations should
also include state transitions. For the What If explanation,
the user may want to speculate if a previous state was
different, even though hidden states are actually inferred.

Why, Why Not, How To, and Certainty explanations
Same as for naïve Bayes, but with added evidence for time.

Reducing Dimensionality
If an application has many input features and/or a long
sequence (i.e,. large and/or large), there may be too
many evidence components. To reduce this dimensionality
and make this more interpretable, we can sum evidence by
feature across time (see Figure 8), or present evidence by
time and sum evidence across features for each observation.

VALIDATION: DEMONSTRATION APPLICATIONS
To demonstrate that we can easily generate a range of
explanations from context-aware applications using the
Context Toolkit augmented with the Intelligibility Toolkit,
we built three example intelligible applications. These
examples demonstrate the use of the Intelligibility Toolkit
for a span of explanation types and model types, and also
cover a range of application domains for which the models
are popular. While the toolkit significantly contributes to
lowering the bar to providing explanations in context-aware
applications, the explanations still need to be well designed
(e.g., for various UI, interaction, and device modality), and

19

crafted specifically for each application problem domain.
Therefore, rather than examining different explanation
methods for the same model or application (e.g., [38]), we
built different applications for each model type to
demonstrate the generality of the Intelligibility Toolkit to
provide explanations across application domains.

IM Autostatus Plugin – Rules / Decision Tree
Rule-based and decision tree-based explanations are similar
so we only show decision tree explanations here. We built
an AIM plugin that predicts when a buddy will respond to a
message (Figure 7). It is trained on an existing dataset from
[2] to build a decision tree. It takes desktop-based sensor
inputs and makes response predictions (within/after 1 min).

We describe how we built this application in detail (the
following two applications were built in a similar fashion)
with the following procedure:
1. Create an Enactor for the overall application.
2. Create a Widget that tracks and updates all input

features (extracted from the Subtle toolkit [14]).
3. Set a pre-trained J48 decision tree classifier model to

be the Enactor's classifier.
4. Set the Enactor's list of output values to two values:

WITHIN_1_MIN and AFTER_1_MIN.
5. Create two References, (a) associate them with the

classifier and (b) associate one output value with one
Reference. The developer implements what the
application does when each Reference is triggered.

6. Create a RulesExplainer and associate with both
References.

7. Set the DisjunctionReducer and ConjunctionReducer of
the Explainer to FirstDReducer and
TruncationCReducer, respectively.

8. Create an IMAutostatusPresenter, a custom extension
of RulesTextPresenter that understands what each
feature means to provide domain-specific textual
explanations. It also handles printing an AIM message.

9. Code UI elements to invoke, on user prompt, various
getExplanation() functions from the Explainer. The
corresponding Querier needs to be supplied when
invoking each explanation type.

When the user asks for, say, a Why Not explanation about
why not WITHIN_1_MIN:
1. The UI parses his request, populates an AltQuerier

with WITHIN_1_MIN, and invokes
getExplanation(WhyNot, AltQuerier).

2. The Enactor takes the returned explanation Expression
and passes it to RulesTextPresenter that renders it for
the user as an IM response.

Mobile Physical Activity Recognizer – Naïve Bayes
The naïve Bayes application we built is a physical activity
recognizer that uses the accelerometer on a Google Android
mobile phone to infer whether the user is sitting, standing,
or walking (see Figure 6). It uses the NaiveBayesExplainer
to generate all of the explanation types, FirstDReducer and
TruncationCReducer to simplify the explanations, and
EvidenceJsonPresenter to render the explanation in a
server call. The Android application retrieves the
explanation and renders the bar chart visualization.

Home Activity Recognizer – HMM
We demonstrate explanations from an HMM model using
the dataset from [21] about domestic activity, and train a
HMM with a sequence length of 5 min, and 1 min per
sequence step. The application takes 14 binary input
sensors and infers which activity (out of 7) the user is
performing. It uses an instance of HMMExplainer to
generate all of the explanation types, FirstDReducer and
TruncationCReducer to simplify the explanations, and a
custom Presenter to exaggerate and visualize the
explanation evidences (see Figure 8).

LIMITATIONS AND DISCUSSIONS
While the Intelligibility Toolkit is extensible, the current
implementation does not cover some outstanding aspects.
(i) It does not cover the less-frequently used model types
(e.g., SVM, clustering) and does not handle ensemble
techniques of composite classifiers (e.g., bagging,
boosting). (ii) There remain some types of explanations that
users ask for that are not yet supported: e.g., how to Control
an application to change its behavior (though this is
supported with Parameters in the Enactor framework [13]),
History (when something happened/changed, trends), and
Provenance (source, credibility, and accuracy of inputs).
(iii) Often, sensed raw inputs of context-aware applications
are pre-processed, e.g., using signal processing or
computer vision techniques. Although important [33], the
toolkit does not currently capture and explain these pre-

Figure 7: IM Autostatus. Demonstration of various explanations
from an IM responsiveness prediction plugin that uses a decision

tree to predict when a buddy would respond.

Alice (5:08:03 PM): It would be so nice if something made sense for a change.
Bob (5:08:04 PM): im‐autostatus>> It is likely that I will respond after 1
min.
(You may type “im‐why”, “im‐whynot”, “im‐howto”, “im‐%”, or “im‐help”)

Alice (5:08:30 PM): im‐why
Bob (5:08:31 PM): im‐autostatus>> It is likely that I will respond after 1
min because:
1.I am more than 29 years old
2.You typed more than 3 words
3.Your message does not contain a URL
4.Your message is not a question
5.I have your IM window open but out‐of‐focus
(You may type “im‐1”, “im‐2”, “im‐3”, “im‐4”, “im‐5”, “im‐why”, “im‐
whynot”, “im‐howto”, “im‐%”, or “im‐help”)

Alice (5:09:43 PM): im‐1
Bob (5:09:44 PM): im‐autostatus>> I am 31 years old.

Alice (5:09:47 PM): im‐%
Bob (5:09:48): im‐autostatus>> It is 85.6% likely that I will respond after 1
min.

Alice (5:09:52 PM): im‐whynot< 1 min
Bob (5:09:53 PM): im‐autostatus>> It is likely that I will not respond within
1 min because:
1.I have been focused on a window for more than 0 sec in the last 30 sec
2.I have been moving my mouse for more than 130 events in the last 30 sec

Alice (5:10:29 PM): im‐howto< 1 min
Bob (5:09:30 PM): im‐autostatus>> I would respond within 1 min if:
1.The I’ve been focused on a window for less than or equal to 0 sec in

the last 30 sec
2.I have been moving my mouse for more than 130 events in the last 30 sec
3.Your IM message comprises less than or equal to 59 characters

20

processing mechanisms. (iv) Applications may encounter
behaviors due to the infrastructure rather than the decision
model or inputs. For example, unexpected behavior may
result from resources suddenly being unavailable due to
connectivity issues. The toolkit does not currently support
explanations about the infrastructure.

RELATED WORK IN EXPLAINING CONTEXT
The Intelligibility Toolkit supports a wide range of
explanations for multiple decision models. Previous
systems only covered a subset of the explanation types, and
only for one or one type of decision model.

The most similar framework to our toolkit is the Enactor
framework [13], on which we base our Intelligibility
Toolkit. It can provide What explanations by exposing the
state of input Widgets, and Why explanations by reporting a
relevant rule. However, it does not support the other
explanation types or any models beyond rules. The Crystal
framework [30] supports only Why / Why Not explanations
for desktop-based applications to explain themselves
through Command Objects. The Whyline [22] similarly
explains Why / Why Not to end-user programmers, by
examining the program execution tree. PersonisAD [1]
defines a distributed framework to support What
explanations by resolving identities and associations of
devices, locations, people, etc. The Intelligent Office
System [10] provides What explanations by showing the

system state, History explanations by listing the states
across time, and Why explanations about the learned cut-
points for its rules. Panoramic [44] provides Why, What,
and History explanations to explain location events through
a visualization of parallel timelines of sensed and rule-
determined events.

While the aforementioned systems provide explanations for
rules, Tullio et al. [42] explained interruptibility inferred
from decision trees and naïve Bayes with What
explanations. The Intelligibility Toolkit can provide deeper
(e.g., Why, Why Not, How To) explanations from these
models. Kulezsa et al. [24] built an intelligible email sorter
that uses naïve Bayes for classification. It provides Why,
Why Not, and What If explanations based on the weights of
evidence approach [34]. The Intelligibility Toolkit also uses
this approach, and adds more explanation types, supports
numeric input features, extends it for HMMs, and has been
developed to be extensible.

CONCLUSION AND FUTURE WORK
We have presented the Intelligibility Toolkit that currently
provides automatic generation of eight explanation types
(Inputs, Outputs, What, What If, Why, Why Not, How To,
Certainty) for the four most popular decision model types
(rules, decision trees, naïve Bayes, hidden Markov models)
in context-aware applications. It supports the generation of
explanation structures (through Explainers), querying
mechanisms to specify questions and constrain explanations
(through Queriers), simplifying complex explanations
(through Reducers), and presenting the explanations to end-
users and other subsystems (through Presenters). The
toolkit is also extensible to support new explanation types,
model types, reduction heuristics, and presentation formats.
The Intelligibility Toolkit makes it easier for developers to
provide many explanation types in their context-aware
applications. This ease also allows developers to perform
rapid prototyping of different explanation types to discern
the best explanations to use and the best ways to use them.

In addition to addressing the limitations outlined earlier, we
will use the Intelligibility Toolkit, to pursue further research
questions regarding the intelligibility of context-aware
applications. In particular, we can investigate and compare
the efficacy of various explanation types, by measuring
how well each type helps users to understand the
application, and improve their trust in the application. We
also plan to deploy an intelligible application with multiple
explanation types, and multiple context types (e.g., location,
physical activity), and conduct a longitudinal evaluation of
the impact of intelligibility and how well it improves
understanding or corrects misunderstanding.

ACKNOWLEDGMENTS
This work was funded by the National Science Foundation
under grant 0746428, and the Agency for Science
Technology And Research, Singapore. We also thank
Stephanie Rosenthal, Somchaya Liemhetcharat, Jen
Mankoff, Zhiquan Yeo, Andreas Möller, Brian Ziebart,
Matt L. Lee, and Bryan Pendleton for their helpful advice.

Figure 8: Demonstration of Why explanation visualization

from an application using a HMM to model domestic activity.

This explains why the application inferred a sequence of Sleeping →
Toilet → Toilet → Breakfast → Breakfast in the last 5 min. Evidence due
to features (summed across the last 5 min) are indicated by the area of
bubbles around the corresponding sensors in the floorplan. Evidence for
each sensor across time is revealed in a tooltip.

We can see that the Hall Bedroom Door being open is a strong indicator of
inferring the sequence. The door being open is a stronger indicator than it
being closed 4 min ago. The microwave is another strong indicator
(biggest bubble in top right corner).

21

REFERENCES
1. Assad, M. et al. (2007). PersonisAD: Distributed, Active,

Scrutable Model Framework for Context-Aware Services.
Pervasive 07, 55-72.

2. Avrahami, D. & Hudson, S.E. (2006). Responsiveness in Instant
Messaging: Predictive Models Supporting Inter-Personal
Communication. CHI 06, 731-740.

3. Bardram, J. E. (2005). The Java Context Awareness Framework
(JCAF) – A Service Infrastructure and Programming
Framework for Context-Aware Applications. Pervasive 05, 98-
115.

4. Barkhuus, L. & Dey, A.K. (2003). Is context-aware computing
taking control away from the user? Three levels of interactivity
examined. Ubicomp 03, 149–156.

5. Bellotti, V. & Edwards, W.K. (2001). Intelligibility and
Accountability: Human Considerations in Context-Aware
Systems, Human-Computer Interaction, 16(2-4): 193-212.

6. Borriello, G. et al. (2004). Reminding About Tagged Objects
Using Passive RFIDs. Ubicomp 04, 36-53.

7. Bulling, A., Ward, J. A., Gellersen, H., & Tröster, G. (2008).
Robust Recognition of Reading Activity in Transit Using
Wearable Electrooculography. Pervasive 08, 19-37.

8. Chang, K., Hightower, J., & Kveton, B. (2009). Inferring
Identity Using Accelerometers in Television Remote Controls.
Pervasive 09, 151-167.

9. Chang, K., Chen, M. Y., & Canny, J. (2007). Tracking Free-
Weight Exercises. Ubicomp 09, 19-37.

10. Cheverst, K.. et al. (2005). Exploring issues of user model
transparency and proactive behavior in an office environment
control system. UMUAI 05, 15(3-4), 235-273.

11. Dey, A.K., Abowd, G.D. & Salber, D. (2001). A conceptual
framework and a toolkit for supporting the rapid prototyping of
context-aware applications. Human-Computer Interaction,
16(2–4): 97–166.

12. Dey, A. K. & de Guzman, E. (2006). From awareness to
connectedness: the design and deployment of presence displays.
CHI 06, 899-908.

13. Dey, A. K. & Newberger, A. (2009). Support for context-aware
intelligibility and control. CHI 09, 859-868.

14. Fogarty, J. & Hudson, S. E. (2007). Toolkit support for
developing and deploying sensor-based statistical models of
human situations. CHI 07, 135-144.

15. Franois, J.M. (2010). Jahmm: An implementation of Hidden
Markov Models in Java. http://code.google.com/p/jahmm/.
Retrieved 9 Mar 2010.

16. Froehlich, J. et al. (2009). UbiGreen: investigating a mobile tool
for tracking and supporting green transportation habits. CHI 09,
1043-1052.

17. Gregor, S. & Benbasat, I. (1999). Explanations From Intelligent
Systems: Theoretical Foundations and Implications for Practice.
MIS Quarterly 23(4): 497–530.

18. Gu, T., Pung, H. K., & Zhang, D. Q. (2005). A service-oriented
middleware for building context-aware services. Journal of
Network and Computer Applications, 28(1), 1-18.

19. Hall, M. et al. (2009). The WEKA Data Mining Software: An
Update. SIGKDD Explorations 09, 11(1), 10-18.

20. Herlocker, J., Konstan, J. & Riedl, J. (2000). Explaining
collaborative filtering recommendations. CSCW 00, 241-250.

21. Kasteren, T. L. M. et al. (2008). Accurate Activity Recognition
in a Home Setting. Ubicomp 08, 1-9.

22. Ko, A. J. & Myers, B. A. (2009). Finding causes of program
output with the Java Whyline. CHI 09, 1569-1578.

23. Kofod-Petersen, A., & Mikalsen, M. (2005). Context:
Representation and reasoning – Representing and reasoning
about context in a mobile environment. Revue d’Intelligence
Artificielle, 19, 479–498.

24. Kuleza, T. et al. (2009). Fixing the Program My Computer
Learned: Barriers for End-users, Challenges for the Machine.
IUI 09, 187-196.

25. Lim, B. Y., Dey, A. K. (2009). Assessing Demand for
Intelligibility in Context-Aware Applications. Ubicomp 09, 195-
204.

26. Lim, B. Y., Dey, A. K. & Avrahami, D. (2009). Why and why
not explanations improve the intelligibility of context-aware
intelligent systems. CHI 09, 2119-2128.

27. McGuinness, D. et al. (2007). A Categorization of Explanation
Questions for Task Processing Systems. AAAI Workshop on
Explanation-Aware Computing (ExaCt-07).

28. Mozina M. et al. (2004). Nomograms for Visualization of Naive
Bayesian Classifier. PKDD 2004, 337-348.

29. Muir, B. (1994). Trust in automation: Part i. theoretical issues in
the study of trust and human intervention in automated systems.
Ergonomics, 37(11): 1905–1922.

30. Myers, B. A. et al. (2006). Answering why and why not
questions in user interfaces. CHI 06, 397-406.

31. Newcomb, E., Pashley, T., & Stasko, J. (2003). Mobile
computing in the retail arena. CHI 03, 337-344.

32. Olsen, D. R. (2007). Evaluating user interface systems research.
UIST 07, 251-258.

33. Patel, K. et al. (2008). Investigating Statistical Machine
Learning as a Tool for Software Development. CHI 08, 667-
676.

34. Poulin, B. et al. (2006). Visual explanation of evidence in
additive classifiers. IAAI 06, 1822-1829.

35. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers.

36. Rabiner L. R. (1989). A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings of the
IEEE, 77(2):257–286, 1989.

37. Robnik-Šikonja, M. & Kononenko, I. (2008). Explaining
Classifications For Individual Instances. IEEE Transactions on
Knowledge and Data Engineering, 20(5): 589-600.

38. Stumpf, S. et al. (2009). Interacting meaningfully with machine
learning systems: Three experiments. International Journal of
Human-Computer Studies, 67(8), 639-662.

39. Tapia, E. M., Intille, S. S., Larson, K. (2004). Activity
Recognition in the Home Using Simple and Ubiquitous Sensors.
Pervasive 04, 158-175.

40. Terada, T. et al. (2004). Ubiquitous Chip: A Rule-Based I/O
Control Device for Ubiquitous Computing. Pervasive 04, 238-
253.

41. Tsukada, K. & Yasumura, M. (2004). ActiveBelt: Belt-Type
Wearable Tactile Display for Directional Navigation. Ubicomp
04, 384-399.

42. Tullio, J. et al. (2007). How it works: A field study of non-
technical users interacting with an intelligent system. CHI 07,
31-40.

43. Weiser, M. & Brown, J. S. (1997). The coming age of calm
technology. Beyond Calculation: the Next Fifty Years, 75-85.

44. Welbourne, E., Balazinska, M., Borriello, G., Fogarty, J. (2010).
Specification and Verification of Complex Location Events.
Pervasive 10, 57-75.

45. Zheng, Y. et al. (2008). Understanding mobility based on GPS
data. Ubicomp 08, 312-321.

22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

