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ABSTRACT
Understanding utilization of city roads is important for ur-
ban planners. In this paper, we show how to use hand-
off patterns from cellular phone networks to identify which
routes people take through a city. Specifically, this paper
makes three contributions. First, we show that cellular hand-
off patterns on a given route are stable across a range of
conditions and propose a way to measure stability within
and between routes using a variant of Earth Mover’s Dis-
tance. Second, we present two accurate classification algo-
rithms for matching cellular handoff patterns to routes: one
requires test drives on the routes while the other uses signal
strength data collected by high-resolution scanners. Finally,
we present an application of our algorithms for measuring
relative volumes of traffic on routes leading into and out of
a specific city, and validate our methods using statistics pub-
lished by a state transportation authority.
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INTRODUCTION
Urban planners are interested in understanding the mobility
patterns of the people who live in and use their cities. This
understanding facilitates effective solutions to problems with
traffic congestion, parking, vehicular and pedestrian safety,
and other aspects of urban living. To gain some knowledge
of mobility patterns, planners currently use a combination of
census data and vehicle counting. However, the expense of
these methods typically results in infrequent data collection
and/or small population samples.

Cellular telephone networks have the potential to provide
near real-time information about human mobility on a large
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Figure 1. Thirteen driving routes (R1-R13) and two train routes (T1-
T2) leading to the center of Anytown. R5, R7, R8, and R9 are freeways;
the remainder are other principal commuting routes into town.

scale and at a low cost. These networks must know the ap-
proximate locations of all affiliated cell phones in order to
provide the phones with voice and data services. Since peo-
ple usually carry their cell phones with them, the location of
a phone is a good proxy for the location of its owner.

This paper explores the use of cellular handoff patterns to
identify which routes people take through a city. A handoff
pattern is the sequence of cellular antennas that a moving
phone uses while engaged in a voice call. However, it is not
obvious whether these patterns can be translated into useful
route information. The main challenge is location inaccu-
racy due to the large geographic areas covered by individ-
ual antennas, which are often larger than one square mile.
Therefore, knowing which antenna a phone is connected to
does not immediately reveal what route the phone’s owner
is traveling on. However, it is possible that knowing se-
quences of antennas can yield enough information to reveal
these routes.

Specifically, we investigate the use of handoff patterns ex-
tracted from anonymized Call Detail Records (CDRs). CDRs
are collected when a phone is involved in a call, and may
contain the full sequence of antennas used by the phone dur-
ing that call. CDRs are routinely collected by network op-
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erators for all active cellular phones, which number in the
hundreds of millions in the US and billions worldwide. Fur-
thermore, CDRs are already used for network operation and
planning, so additional uses incur little marginal cost. An-
other advantage of CDRs is that they are generated inside
the network and thus do not place any extra burden on the
limited resources of mobile phones, particularly their batter-
ies. Despite the fact that our data is restricted to records
of phones actively making calls while in transit, the ubiquity
and scale of CDR records combined with the likelihood that
we will observe a call in a moving vehicle provides us with
sufficient data to apply our methods, even in a mid-sized sub-
urban city. We defer the discussion of the limitations of our
approach to a later section of the paper. We note, however,
that our route identification techniques are independent of
how cellular handoff patterns are recorded, whether by the
network or by the phones.

Our work explores the following research questions:

1. Are handoff patterns stable across a wide enough range of
conditions to be used for identifying routes?

2. Can we devise algorithms that reliably match handoff pat-
terns to routes?

3. Can we derive reliable route utilization statistics from cel-
lular network data?

To answer these questions, we undertook an experimental
study of 15 driving and train routes leading into Anytown,
a suburban city with roughly 20,000 residents. Figure 1
shows these routes. We used cellular phones to maintain
active voice calls while we drove a car and rode the train on
these routes. Later, we obtained CDRs from our calls, and
used the corresponding handoff patterns to evaluate different
route classification techniques. Finally, we applied our best
performing techniques to 60 days of anonymized CDRs for
all calls handled by one cellular carrier in the Anytown area.

This paper makes the following contributions:

1. We show that cellular handoff patterns are stable across
different routes, speeds, directions, phone models, and
weather conditions.

2. We propose two algorithms for matching handoff patterns
to routes and show that they are accurate. The first uses
nearest neighbor classification based on Earth Mover’s Dis-
tance [8, 9]. The second uses signal strength data to com-
pute the likelihood that a given handoff pattern occurs on
a particular route.

3. We show how CDRs, in combination with our algorithms,
can be used to determine the relative traffic volumes on
roads. We validate these results against statistics pub-
lished by a state transportation authority.

STABILITY OF HANDOFF PATTERNS
In this section, we show that cellular handoff patterns on a
given route are stable over time and across a wide range of
conditions. This stability allows us to capture the “typical”

handoff pattern for a given route at one time and use it for
route classification at another time.

We use the following terminology throughout the rest of this
paper. A cell tower is a physical structure holding radio an-
tennas and located at a particular latitude and longitude. A
sector corresponds to a direction from a given cell tower.
Each sector is covered by one or more antennas. An antenna
is a physical device that communicates with mobile phones.
Each antenna services a particular cellular technology (e.g.,
UMTS) and frequency (e.g., 2.1 GHz). Finally, a handoff
pattern for a call consists of the list of antennas that han-
dled that call, together with the time intervals during which
the phone was communicating with each of those antennas.
More formally, a handoff pattern for a call handled by n an-
tennas can be expressed as H = {(ai, ti), i = 1, . . . , n},
where ai is the identifier of the ith antenna that handled the
call and ti is the duration (in seconds) the call spent on the
antenna ai.

Route Stability Data Collection
To test the stability of handoff patterns on a route, we col-
lected data on a 3-mile stretch of road located in a residential
area with many traffic lights and mostly two story buildings.
In total, we collected 39 traces under the following varying
conditions:

Time Eight months, from September, 2010 to April, 2011.

Phone Model iPhone 3GS, Nokia N95, Samsung Captivate
(Android), HTC Aria (Android).

Route Direction North to South and the opposite.

Call Direction Calls originated and received.

Weather Sunny, cloudy, raining, snowing.

Traffic No traffic to heavy traffic.

During each drive, there were one or two pairs of phones
in the car, with a call always active between the phones in
each pair. In addition, the car’s true route was captured using
an iPhone application we developed for this purpose. The
application recorded the car’s location every 10 meters using
the iPhone Location API, and uploaded the captured time-
stamped locations to a server. We later obtained the handoff
patterns of all the calls we made during our drives from the
network operator’s CDRs.

Stability Analysis
Figure 2 shows the geographic map of the area around the
3-mile route. The lines connecting cell sectors to the route
represent locations on the route where a call was handed off
to the corresponding sector during any of our 39 drives along
this route. Portions of the route that do not show handoffs
represent areas consistently covered by a single sector.

Figure 3 plots the handoff patterns of the same 39 drives in
a way that allows side-by-side comparison. Each horizontal
strip represents one drive along the route. Each color repre-
sents a different cell sector, using the colors from Figure 2.
The drives are sorted by time, with the white strip separating
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Figure 2. Handoff Stability. The black line marks the 2.8-mile route
we drove repetitively to monitor the stability of handoffs under varying
conditions. Black dots show the location of cell towers; these are con-
nected to open circles showing the angle of an associated sector. Each
thin colored line extends from a point on the route where a handoff
occurred to the sector that received the call.

distance along the route (miles)

0.0 0.5 1.0 1.5 2.0 2.5

Figure 3. Side-by-side route coverage chart. Each horizontal strip rep-
resents one drive along the route. Colors represent sectors covering
that portion of the route. The top section (8 calls) were for drives in one
direction; the rest in reverse. Note that the handoffs happen at roughly
the same locations along the route, and that the set of sectors covering
each drive is almost identical.

drives in the two opposite directions. To directly compare
the drives in both directions, we reversed the handoff pat-
terns of drives in one direction.

We expect the geographic area for a handoff between two
antennas to be roughly the same, regardless of the direction
travelled. Indeed, we see each cell sector “covering” a cer-
tain geographic area. However, the locations of handoffs
during drives in one direction appear to consistently lag rel-
ative to drives in the other direction. We believe this is due
to the cellular network’s desire to keep the phone connected
to the current antenna as long as possible to avoid spurious
handoffs. Other visualizations (not included in this paper for
space reasons),permute the strips in Figure 3 using different
grouping variables, and show that handoff patterns are rel-
atively stable across all conditions. The same sectors cover
the same road segments consistently, regardless of the phone
model, weather conditions, traffic conditions and time.

Note that Figure 3 plots handoff patterns as a function of
travelled distance. If plotted as a function of time, however,
handoff patterns on the same route show greater differences

because the phone may spend different amounts of time on
each sector, due, for example, to varying traffic conditions.
A good route classification algorithm must handle these time
fluctuations.

ROUTE CLASSIFICATION USING NEAREST NEIGHBORS
The stability of handoff patterns across repeated drives on
a given route is only part of the story. To match handoff
patterns to routes requires that the handoff patterns of those
routes are unique, even if the routes are geographically close.
In order to assess our ability to classify handoff patterns into
actual routes, we identified 15 common routes into and out of
Anytown to form the basis of our experimental study. Each
route either originates or terminates in the center of the city.
We then developed and evaluated two methods for classi-
fying handoff patterns on these routes. The first method
uses handoff patterns collected from test drives as the train-
ing data for nearest-neighbor classification algorithms, and
the second method uses signal-strength data collected on the
routes as training data.

Test Drive Data Collection
We collected data on 13 commuter routes and 2 train routes
leading into Anytown, a suburban city with approximately
20,000 residents. These routes represent all major ways to
get in and out of the city. The route lengths vary from 3
to 6 miles. Many of the routes either partially overlap (e.g.,
routes R7 and R8) or lay very close to each other (e.g., routes
T2 and R10). Overlapping or nearby routes serve to both
stress-test our classification algorithms and to reflect reality.
Figure 1 shows the 15 routes.

We travelled each route four times, two in each direction,
primarily in the Fall of 2010, with a few fill-in drives and
train rides in March of 2011. During each drive, there were
two phones of different models in the car, one calling the
other. As before, we obtained the handoff patterns of all calls
from the network operator’s CDRs. In total, we collected
4× 2× 15 = 120 handoff patterns.

Distance Metrics and Classification Algorithm
Our classification is done via a nearest-neighbor algorithm.
For each route, we split the 8 test drives randomly into equal
sized training and test sets. For each instance in the test set,
we assign the route label of the nearest instance from the
training set. We evaluated four different distance metrics, as
this choice is crucial for determining the nearest neighbor.

Common Subset Distances
Distances between two handoff patterns can be defined by
measuring how much the two patterns have in common [13].
These distances are based on attributes of antennas in the
handoff patterns. The larger the intersection between these
sets of attributes, the more similar the handoff patterns. We
refer to these distances as common-subset distances. We de-
fined three common-subset distances that compare these at-
tributes at different levels of granularity: cell towers, sectors,
and antennas. The Common Antennas distance between two
handoff patterns is the number of antennas that appear in
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Call A A->B Call B

Figure 4. What is the Earth Mover’s Distance between call A and call B? Each colored dot represents one minute of connect time to a specific sector
(gray ovals). Both calls are 8 minutes long, but distributed differently across sectors. The curved black line represents a road. A->B shows the EMD
metric optimally redistributing the minutes from sector to sector, turning call A into call B. The number of minutes moved between each pair of
sectors is multiplied by the the Euclidean distance between that pair, summed for all pairs, and divided by total minutes moved, yielding the EMD.

both handoff patterns. Similar definitions apply to Common
Sectors and Common Towers distances.

Classification algorithms based on these common subset dis-
tances compute the number of common entities between a
handoff pattern in the test set and each of the handoff pat-
terns in the training set. The training route with the highest
number of common entities is selected as the best matching
route. In the case of a tie, the training handoff pattern with
the higher actual number of matching items (as opposed to
the common set size) wins.

Earth Mover’s Distance
Although common subset distances are good for baselines,
they do not account for three important characteristics of the
handoff pattern. First, the sequential nature of the handoff
pattern is lost, basically reduced to an unordered set of enti-
ties to be used in the calculation. Second, temporal informa-
tion on how long the call spends on each tower is not used
by these algorithms. Finally, the cell tower location is not
accounted for. Two patterns that differ only by towers that
are close to each other should be considered close patterns.

We propose a variant of Earth Mover’s Distance (EMD) as
a distance metric that accounts for all of these characteris-
tics. EMD is traditionally used to measure the differences
between images. It was introduced as a technique for im-
age retrieval in the computer vision community, although its
roots are far older, [8, 9] and has previously been applied
to wireless signals [3]. In the statistical literature, EMD is
known as Mallows distance [6] or Wasserstein distance and
is used as a distance metric for probability density functions.

Conceptually, imagine a pair of two dimensional images,
where each pixel’s brightness value is represented by a pile
of dirt on that pixel. Pixels with similar brightness have sim-
ilar amounts of dirt. Now, consider the energy needed to
transform one image into the other by moving the piles of
dirt. EMD is defined as the minimal energy needed to move
the mass of dirt of one image into the locations that result in
the target image. One only needs to define how that energy
is calculated. Similarly, EMD is defined for arbitrary prob-

ability distributions as the mass of probability that needs to
be moved to turn one distribution into another,

Figure 4 illustrates a simplified example of how we apply
EMD to cellular call data. Given handoff patterns of calls A
and B, the figure shows how much and what “work” needs
to be performed to convert call A into call B.

More formally, let us define a handoff pattern as a sequence
P , with elements pi representing the locations of cell sectors
in the sequence, and wpi

representing a weight on each of
those sectors. Then, let P and Q be two handoff patterns:

P = {(p1, wp1), (p2, wp2), . . . , (pm, wpm)} (1)
Q = {(q1, wq1), (q2, wq2), . . . , (qn, wqn)}, (2)

and let D = [dij ] be the geographical ground distance be-
tween points pi and qj . Define the flow, fij as the amount
of mass transported between points pi and qj . We want to
find F = [fij ], that minimizes the overall cost

W (P,Q, F ) =
m∑
i=1

n∑
j=1

fijdij (3)

Let
[
f∗ij
]

be the optimal flow that minimizes Equation 3.
Then, the Earth Mover’s Distance is defined to be

EMD(P,Q) =

∑m
i=1

∑n
j=1 f

∗
ijdij∑m

i=1

∑n
j=1 f

∗
ij

(4)

In our case, the spatial locations pi and qj are given by the
physical location (latitude and longitude) of sectors. We al-
low for the directionality of sectors by adjusting this location
by a radius r in the direction of the azimuth of the sector. We
set the weights wi to be the duration spent on the particular
sectors. We use Euclidean distance

dij =
√
(xi − xj)2 + (yi − yj)2 + (ρti − ρtj)2 (5)
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Figure 5. Boxplots show the within-route variation of handoff pat-
terns, as computed by EMD distance. For each route, the within-route
distance distribution is much smaller than the between-route distances.
This figure shows within-route handoff pattern consistency and that the
routes are different from one another and thus can be distinguished.

as our ground distance. In order for dij to operate on both
space and time, we introduce a factor ρ as a conversion factor
between the two dimensions to put them on a similar scale.
In this way, EMD defines the distance between two distinct
calls (handoff patterns), while accounting for temporal and
spatial similarity.

One complexity of using EMD for our data is that handoff
patterns can have varying length, both in duration and in the
sequence of cell sectors, even on the same route (e.g., due
to traffic lights). However, even in the extreme case where
one sequence is a subset of another, EMD is still an effective
distance metric. The imbalance would not contribute to the
measure as the excess portion of the longer sequence will
not be ‘moved’ and thus not included in any flow fij . A
by-product of this feature is that the resulting measure is not
commutative and hence no longer a proper distance metric.
To adjust for this, we use the minimum of EMD(P,Q) and
EMD(Q,P ) as our distance measure.

Applying EMD in a nearest-neighbor classification task is
a straightforward calculation of EMD between the test in-
stances and our training set, then selecting the route label of
the nearest one. However, we need one more adjustment to
account for situations where the routes of interest are nested,
or nearly nested (as in our R2 and R10). In this case, a frac-
tion of a drive along the longer route could be matched well
by the shorter route even though the longer route would ac-
count for more mass. Hence, for classification, we penalize
short matches by adjusting EMD by a multiplicative factor
equal to the quotient of the masses

∑
i wpi

/
∑

j wqj , where
pi represents the test sequence and qi the training sequence.

In this implementation of EMD, both r and ρ are free pa-
rameters in our classification algorithm, and so we optimize
them using a grid search and cross-validation. The resulting
values are r = 660m and ρ = 5m/s, although the classifi-
cation is not overly sensitive to the exact values. Our source
code is available as the R package emd from CRAN.
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Figure 6. A comparison of nearest-neighbor classification using four
distance metrics, with four handoff patterns as training and four as
testing per route. Accuracy is shown as a function of the number of
handoffs per drive. The boxplots show the range of accuracy over 10
randomly chosen training sets and the colored lines connect the medi-
ans of those sets. The EMD metric out-performs the others.

Variability of Handoff Patterns
We assessed the variability of handoff patterns based on the
EMD distance metric by calculating all pairwise EMD dis-
tances for all of the drives on each of our 15 routes, and com-
pared them to the pairwise distances for drives on different
routes. Using the statistical concept of analysis of variance
(ANOVA), we expect that the variance among handoff pat-
terns for different drives on the same route to be significantly
smaller than the variance between handoff patterns of differ-
ent routes. Figure 5 shows the distribution of within-route
distances plotted as boxplots above each route name, as well
as a boxplot for all between-drive pairwise distances.

The figure gives us a good indication of the varying stability
of the different drives. It shows that some routes (R1, R6,
R10) are extremely stable, with consistently small distances
across all pairwise calculations. Other routes are somewhat
less stable, showing a wider spread in the boxplot and per-
haps a few outliers. However, in all cases the within-route
variation is much smaller than the between-routes variation,
providing evidence that EMD will be able to differentiate
between the routes well.

Performance of the Classification Algorithms
To show that we are effectively able to classify handoff pat-
terns to our defined routes, we split our data into training and
test sets, with four randomly selected drives for each route
in each set. We fit each test instance to its nearest neighbor
in the training set using our four distance metrics, EMD and
the three common subset distances, repeating this procedure
for 10 different random selections of the training set.
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Figure 7. The confusion matrix for EMD algorithm with four training
drives shows that most drives were classified correctly. The horizon-
tal axis is the true route and the vertical axis is the predicted route.
Correctly identified drives lie on the diagonal; off-diagonal squares are
mis-classified. The area of the square is proportional to the number of
drives.

We are also interested in measuring how much information
is needed on a single drive in order to classify it correctly.
Since all of our routes emerge from the center of Anytown,
we assessed the accuracy of our algorithms for a call start-
ing in the center of Anytown as a function of the number
of handoffs the algorithm is allowed to observe. Figure 6
shows these results, with boxplots representing the accuracy
across all replications for each distance metric and number
of handoffs. Colored lines connect medians of the boxplots.

Figure 6 shows that, in general, the prediction accuracy in-
creases as the number of handoffs increases up to a satura-
tion point for all metrics. That is, the farther away the phone
moves from the Anytown center, the easier it is to differen-
tiate between routes. The EMD metric performs the best,
achieving a median classification accuracy of 90% after 12
handoffs (corresponding roughly to 2 miles). The Common
Towers metric performs the worst because it cannot differ-
entiate between handoffs occurring between antennas on the
same cell tower. Interestingly, the Common Antennas metric
outperforms the Common Sectors metric for up to 10 hand-
offs, but then performs worse because sometimes phone calls
on the same route are handled by different antennas pointing
in the same direction.

Figure 7 shows the confusion matrix for the EMD algorithm
(the nearest-neighbor classification using the EMD metric)
with four training drives using complete test routes. The
area of the squares is proportional to the number of drives
represented by the square. Squares on the diagonal indicate
correctly classified drives, whereas off-diagonal squares are
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Figure 8. EMD’s classification accuracy improves with the number of
training samples.

misclassified. Not surprisingly, most of mis-classifications
come from overlapping or nearby routes, such as R10 and
T2 or R2 and R10 (see Figure 1).

Finally, we studied the effect the number of training drives
has on the classification accuracy of the EMD algorithm.
Figure 8 shows the performance as we vary the number of
training drives from 1 to 7. The results indicate that perfor-
mance increases with the number of training drives, as the
larger training set allows the EMD algorithm to capture more
variance on each route. However, we see that with as few as
two training drives, performance is quite high, achieving me-
dian accuracy of more than 80% after only 12 handoffs. In
summary, we showed that the EMD algorithm is well suited
to classify handoff patterns under realistic conditions.

ROUTE CLASSIFICATION USING SIGNAL STRENGTHS
The previous section showed that a nearest-neighbor clas-
sification algorithm using EMD does a good job matching
handoff patterns to routes, requiring as few as two train-
ing drives. However, training the algorithm required time-
consuming test drives on every target route, and the use of
EMD as a distance metric is computationally complex. Al-
though that methodology can be valuable for targeted small
deployments where collecting traces of handoff patterns on
routes is feasible, a large-scale deployment requires a differ-
ent approach.

Luckily, cellular network operators routinely use high-resolution
scanners to collect GPS-stamped signal-strength measure-
ments from all observable antennas along all major and some
minor roads. This process is done for network engineer-
ing and maintenance purposes, and it is often referred to as
wardriving in the research community [5].
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In this section, we show that signal-strength data collected
by scanners can be used for matching handoff patterns to
routes, eliminating the need for training drives. We also
present a novel classification algorithm that uses the signal
strength data for training and compare its performance with
that of the nearest-neighbor classification using EMD.

Scanner Data
We obtained access to scanner traces collected around the
Anytown area primarily on September 3, 2010. The traces
include GPS-stamped measurements (one per second) along
most of our routes. Each measurement contains a list of an-
tennas that were observed at a given location along with the
Signal-to-Noise Ratios (SNR), expressed logarithmically in
decibels (dB). Unfortunately, we had no scanner data from
the train routes.

Although the scanner data did not always correspond exactly
to our routes, it did cover the region systematically and we
were able to stitch together various parts of the data to match
the routes. Since the scanner data is collected at regular in-
tervals throughout the year, we have an opportunity to see
how it changes over time, reflecting any changes in network
configuration as well as any seasonal differences.

Signal Strength Route Classification Algorithm
The signal strength algorithm classifies a given handoff pat-
tern to one of the routes and it has two stages. In the first
stage, it creates a matrix of the maximum SNR values ob-
served on each route from each antenna. If a given antenna
has not been observed on a route, the appropriate matrix cell
gets a low value of -30dB [1]. We experimented with lower
floor values and found no effects on our results. More for-
mally, the algorithm builds a matrix S = {(si,j) : i =
1, . . . , n; j = 1, . . . ,m}, where sij is the maximum SNR
value seen on route i from antenna j.

In the second stage, the algorithm estimates the likelihood of
a given handoff pattern appearing on each route by summing
up, separately for each route, the maximum SNR values of
the antennas appearing in the handoff pattern. The handoff
pattern is assigned to the route with the largest likelihood.
The intuition is that the antennas with the strongest signals
on a route are likely the ones that will appear in the handoff
patterns for that route. For example, if a handoff pattern con-
tains three antennas: a1, a3, a5 and there are a total of two
routes r1, r2, the algorithm computes Sri = si,1+si,3+si,5
for i of 1 and 2, corresponding to the two routes. Summing
the SNR logarithms is similar to adding log likelihoods to
get the log likelihood of multiple independent events, ignor-
ing any dependence of antennas on one another.

This approach is a weighted variation of the Common An-
tennas algorithm from the previous section, but the weights
and antennas come from the scanned signal-strength data,
not from CDRs for our own test drives. Therefore, there is
no "training" to be done – the weights take the place of a
multitude of test drives.
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Figure 9. Classification accuracy of the EMD algorithm and the Signal
Strength algorithm over 10 random runs.

Figure 9 compares the performance of the Signal Strength
and EMD algorithms. Although the Signal Strength algo-
rithm outperforms EMD until up to 8 handoff patterns, the
two perform comparably with 9 or more handoff patterns
on a drive, achieving more than 90% accuracy. This is a
strong result, showing that we can achieve similar accuracy
for route classification using two very different approaches.

ESTIMATING RELATIVE TRAFFIC VOLUMES
In this section, we show how our route classification algo-
rithms can be used in practice. Specifically, we show that
anonymized CDRs from a network provider, together with
our route classification algorithms, can be used to estimate
the relative volume of traffic on our Anytown routes.

We had several meetings with urban planners in Anytown,
who showed great interest in estimating the flow of traffic
along certain routes into and out of the city. When they see
congestion in the town center, they do not know where the
cars are coming from or headed. And although they can get
traffic counts at stationary points from traffic meters, learn-
ing about routes entails costly and error-prone surveys of in-
dividuals who travel in the area. Detailed route information
might help planners to design better traffic signaling and to
plan future public transportation infrastructure.

We next describe our CDR collection methodology, the steps
we took to protect people’s privacy and the limitations of our
approach. We then present our estimates for relative traffic
volumes on each route. Finally, we compare our estimates
to publicly available traffic count data from the Anystate De-
partment of Transportation.
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CDR Data Collection
We collected anonymized CDRs from the cellular network
of a large US communications service provider. These CDRs
capture calls carried by the 35 cell towers located within 5
miles of the center of Anytown, a suburban city with approx-
imately 20,000 residents. These 35 cell towers house ap-
proximately 300 antennas pointed in various directions and
supporting various radio technologies and frequencies. Our
goal was to capture cellular traffic in and around the city and
choosing the 5-mile radius allowed us to cover both Any-
town proper and its neighboring areas.

In place of the phone number of the person involved in a
voice call, each CDR contains an anonymous identifier con-
sisting of a unique integer. Each CDR also contains the start-
ing time and duration of the call, and the locations and az-
imuths of the cell tower antennas associated with the event.
The CDRs contain no information about the second party
involved in the call.

We collected voice traffic for 60 days between November
29, 2009, and January 27, 2010, resulting in 15 million voice
CDRs for 475,000 unique phones.

Privacy
Given the sensitivity of CDR data, we took several steps to
ensure the privacy of individuals. First, only anonymous
records were used in this study. The data was collected and
anonymized by a party not involved in the data analysis. Per-
sonally identifying characteristics were removed from our
CDRs. CDRs for the same phone are linked using an anony-
mous unique identifier, rather than a telephone number. No
demographic data is linked to any cell phone user or CDR.

Second, all our results are presented as aggregates. That is,
no individual anonymous identifier was singled out for the
study. By observing and reporting only on the aggregates,
we protect the privacy of individuals.

Finally, each CDR only included location information for
the cellular antennas associated with a phone during a voice
call. The phones were effectively invisible to us outside
those times, and we only knew those phone locations at the
granularity of an antenna’s coverage area, often greater than
one square mile.

Limitations
Our CDR data is limited to devices that are actively mak-
ing a phone call. A US Department of Transportation study
[12] estimates that 9% of drivers are using mobile devices
while they are driving, but underestimates hands-free usage
and omits passenger phone usage. It is possible that this fac-
tor differs according to time of day or length of trip, which
could skew our results. Nonetheless, combining the 9% us-
age factor with our carrier’s significant market share in the
region of the study and the large volume of the overall data
provides confidence that our sample sizes are large enough
to estimate the traffic flows correctly. This confidence would
only increase if we run our algorithms in a market with a
larger subscriber base.

Applying our algorithms in areas without the nice hub-and-
spoke layouts will require a more careful designation of the
roads of interest and is likely to result in different accuracy
numbers. However, we believe that our algorithms are ap-
plicable to environments of any complexity or size.

Analysis
In the previous sections, we tested our route classification
algorithms on handoff patterns known to correspond to one
of our selected city routes. In practice, however, it is a chal-
lenge to determine whether a voice call was conducted while
driving on one of our routes. We used two heuristics to se-
lect an appropriate subset of calls. First, we filtered out all
CDRs for calls that do not begin or end at the cell tower lo-
cated at the center of Anytown. Second, we filtered out all
CDRs whose handoff patterns include antennas from fewer
than 5 distinct cell towers. Although the second step may be
too conservative, we wanted to make sure that the remain-
ing CDRs belong to calls made from moving vehicles. After
filtering, we were still left with tens of thousands of CDRs.

Figure 10 plots relative traffic volumes as estimated by the
EMD algorithm, overlaid on our map of routes into and out
of Anytown. The counts are normalized to a count per 1000
cars. The thickness of the line represents the volume esti-
mated on that route. The plot allows comparing the relative
number of people who access the town from north and south
on the interstate (the black lines) vs. the relative number of
people who enter and leave Anytown on secondary state or
county roads. The relative traffic volumes as computed by
the Signal Strength route classification algorithm are similar
and are not included due to space considerations.

Both of our route classification algorithms can deal with
calls that are not on any of the target routes. When this
happens, the EMD distance will be too large or the signal-
strength likelihood too small, and we can set a threshold that
indicates that the call does not match. After applying the
thresholds on our data, we saw no noticable impact on the
relative traffic distributions.

Validation
We present our results as relative volumes instead of ab-
solute volumes since there are many factors that play into
whether we will see a particular traveling vehicle: the phone
must be active, the user must be a customer of the cellu-
lar provider that supplies the data, the phone must use five
unique towers, and so on. Because of this, validation of our
numbers against readily available government traffic count
data is challenging. An additional challenge is that the gov-
ernment traffic data is typically collected using in-street traf-
fic meters or human car counters. Both methods give a count
at a static point, while our methods are estimating traffic
along a particular route made up of many sequential points.

Nonetheless, we attempted to validate our data with avail-
able traffic count information from the Anystate Department
of Transportation (DOT). The DOT has a multitude of data
available at strategic places around town from traffic meters
over the years 2004-2010 [7]. This data allows us to see how
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Figure 10. Predicted traffic distribution of 1000 calls. Both the EMD
and Signal Strength algorithms were used to estimate traffic volumes
on the 13 commuter routes into Anytown. The EMD results are shown
as flows into Anytown, with the line width proportional to the estimated
volume; the Signal Strength algorithm results are similar.

much daily traffic there is on specific spot on a road. Most
of our routes had multiple traffic measurements available at
different locations along the route.

Because Anytown is a local hub (it is the largest city in its
county), we made the simplifying assumption that all of the
traffic on the secondary roads heading into town either orig-
inated or terminated at the town center. Since this assump-
tion could not be true for the main interstate running through
town, we did not include those routes (R7,R8, and R9) in this
analysis. Also, we did not have any traffic counts for any part
of R10 that was unique to R10, so we excluded that route as
well. Additionally, if a route had multiple measurements of
daily traffic at different locations, we selected the minimum
of these counts. In most cases, this minimum count was at
the furthest point from Anytown, and hence was the best
estimate of the number of cars that had travelled the entire
length of the route. Finally, we removed a single data point
from the DOT data that was highly suspicious as an outlier; it
was incongruous with nearby data points in a way that made
it appear to be erroneous.

Figure 11 shows a scatterplot of EMD-estimated traffic counts
vs. the DOT-supplied traffic counts. The figure shows that
the two estimates are closely related, with a correlation co-
efficient of 0.77. We believe that this result validates our
methodology.

To summarize, we showed how CDR data together with our
route classification algorithms can be used to estimate rel-
ative traffic volumes. We validated this methodology us-
ing Anystate DOT traffic counts. The main advantage of
our technique vs. simply using Anystate DOT estimates is
that we can provide relative traffic estimates much more fre-
quently due to the low cost of our approach. For instance,

0 5000 10000 15000 20000

0
50
0

10
00

15
00

20
00

25
00

DOT Traffic Count Estimates

E
M

D
 E

st
im

at
ed

 C
al

ls

R1

R2R3
R4

R6
R11

R12

R13

correlation: 0.77
linear fit: y = 0.106 x

Figure 11. Comparison of traffic volumes estimated by our EMD al-
gorithm against corresponding values obtained from the Anystate De-
partment of Transportation.

we could generate figures similar to Figure 10 for different
days of the week, times of day, or for special events like a
town parade or a holiday.

RELATED WORK
Mobile phone localization has been an active research topic
during the past decade [14]. Placelab [5, 2] was the first sys-
tem to demonstrate the feasibility of using WiFi and GSM
signals for localizing mobile devices. That effort has in-
spired several follow-up commercial products [15, 16]. In-
stead of localizing mobile devices, this paper addresses the
problem of identifying the route a phone has taken based on
cellular handoff patterns.

Krumm et al. [4] developed a Hidden Markov Model (HMM)
algorithm for map matching using frequently sampled GPS
data. VTrack [11] is a system for travel time estimation us-
ing WiFi-based and GPS-based location predictions. VTrack
estimates travel times by first mapping location estimates ob-
tained from WiFi and GPS to road segments using a HMM-
based algorithm. In contrast to those efforts, we use infre-
quent changes to the currently associated cellular antenna to
match drives to routes.

In a parallel effort to ours, Thiagarajan et al. [10] have devel-
oped CTrack, a system for trajectory mapping using cellular
base-station fingerprints. Using a two phase HMM-based
algorithm and a pre-existing database of location-stamped
GSM fingerprints, CTrack is able to match a stream of new
GSM fingerprints to road segments with a median accuracy
of 75%. CTrack can also utilize information from an ac-
celerometer and a compass to improve its accuracy further.
In contrast, our method doesn’t require new software to be
installed on mobile phones, as we are using the information
collected by cellular network operators for billing and main-
tenance purposes. In addition, our algorithms use only a sin-
gle cellular antenna at a time, whereas CTrack uses ID and
RSSI from up to seven antennas per location. Finally, we
analyzed the stability of handoff patterns and showed how
to estimate relative traffic volumes on roads.
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CONCLUSIONS
CDRs represent perhaps the most abundant records of hu-
man mobility available in the world today, and are routinely
gathered by cellular network operators for operation and plan-
ning. Identifying the trajectories of mobile devices using this
CDR data is of great interest to sociologists, civil engineers,
and urban planners. In this paper, we showed how to use
CDRs to identify which routes people take through a city.

Specifically, we first measured the variability inherent in re-
peated drives of the same route, and showed that the handoff
patterns are relatively stable across different routes, speeds,
directions, phone models, and weather conditions. We also
employed a novel metric for measuring route variability, based
on Earth Mover’s Distance, and used it to quantify variability
across repeated drives of the same route and between routes.

We then proposed two algorithms for matching handoff pat-
terns to routes and showed their accuracy. The first uses
nearest-neighbor classification based on Earth Mover’s Dis-
tance. The second uses signal strength data to compute the
likelihood that a given handoff pattern occurs on a particular
route. We showed that the two algorithms have comparable
results, with accuracies over 90% for classifying new hand-
off patterns with only 12 handoffs. Note that although we
use handoff patterns extracted from CDRs in our study, our
algorithms could be used with cellular handoff patterns cap-
tured by the devices themselves. With more and more hand-
sets providing rich programming APIs, the ability to collect
this data from the handsets themselves is likely to increase.

Finally, we showed how CDRs, in combination with our al-
gorithms, can be used to estimate the relative traffic volumes
on roads, and we validated these estimates against statistics
published by a state transportation authority, showing excel-
lent correlation. Currently, such estimates can only be done
by laborious placement of in-road or human traffic monitors
or by expensive and inaccurate surveys. Conversely, CDRs
come in real time and allow studying effects of weather and
other disruptions in ways the current sporadic measurements
cannot. Our preliminary discussions with urban planners
indicate that if proven effective, CDR-based traffic volume
estimation could bring significant changes in how they do
community planning.
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