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Sensor Characteristics

“O, what men dare do! What men may do!
What men daily do, not knowing what they do.”

—Shakespeare, “Much Ado About Nothing”

From the input to the output, a sensor may have several conversion steps before it
produces an electrical signal. For instance, pressure inflicted on the fiber-optic sensor
first results in strain in the fiber, which, in turn, causes deflection in its refractive index,
which, in turn, results in an overall change in optical transmission and modulation of
photon density. Finally, photon flux is detected and converted into electric current. In
this chapter, we discuss the overall sensor characteristics, regardless of its physical
nature or steps required to make a conversion. We regard a sensor as a “black box”
where we are concerned only with relationships between its output signal and input
stimulus.

2.1 Transfer Function

An ideal or theoretical output–stimulus relationship exists for every sensor. If the sen-
sor is ideally designed and fabricated with ideal materials by ideal workers using ideal
tools, the output of such a sensor would always represent the true value of the stimulus.
The ideal function may be stated in the form of a table of values, a graph, or a mathe-
matical equation. An ideal (theoretical) output–stimulus relationship is characterized
by the so-called transfer function. This function establishes dependence between the
electrical signal S produced by the sensor and the stimulus s : S= f (s). That func-
tion may be a simple linear connection or a nonlinear dependence, (e.g., logarithmic,
exponential, or power function). In many cases, the relationship is unidimensional
(i.e., the output versus one input stimulus). A unidimensional linear relationship is
represented by the equation

S= a+ bs, (2.1)
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where a is the intercept (i.e., the output signal at zero input signal) and b is the slope,
which is sometimes called sensitivity. S is one of the characteristics of the output
electric signal used by the data acquisition devices as the sensor’s output. It may be
amplitude, frequency, or phase, depending on the sensor properties.

Logarithmic function:
S= a+ b ln s. (2.2)

Exponential function:
S= aeks . (2.3)

Power function:
S= a0+ a1s

k, (2.4)
where k is a constant number.

A sensor may have such a transfer function that none of the above approximations
fits sufficiently well. In that case, a higher-order polynomial approximation is often
employed.

For a nonlinear transfer function, the sensitivity b is not a fixed number as for the
linear relationship [Eq. (2.1)]. At any particular input value, s0, it can be defined as

b= dS(s0)

ds
. (2.5)

In many cases, a nonlinear sensor may be considered linear over a limited range. Over
the extended range, a nonlinear transfer function may be modeled by several straight
lines. This is called a piecewise approximation. To determine whether a function can
be represented by a linear model, the incremental variables are introduced for the
input while observing the output. A difference between the actual response and a liner
model is compared with the specified accuracy limits (see 2.4).

A transfer function may have more than one dimension when the sensor’s output
is influenced by more than one input stimuli. An example is the transfer function of a
thermal radiation (infrared) sensor. The function1 connects two temperatures (Tb, the
absolute temperature of an object of measurement, and Ts , the absolute temperature
of the sensor’s surface) and the output voltage V :

V =G(T 4
b − T 4

s ), (2.6)

where G is a constant. Clearly, the relationship between the object’s temperature and
the output voltage (transfer function) is not only nonlinear (the fourth-order parabola)
but also depends on the sensor’s surface temperature. To determine the sensitivity
of the sensor with respect to the object’s temperature, a partial derivative will be
calculated as

b= ∂V

∂Tb

= 4GT 3
b . (2.7)

The graphical representation of a two-dimensional transfer function of Eq. (2.6) is
shown in Fig. 2.1. It can be seen that each value of the output voltage can be uniquely

1 This function is generally known as the Stefan–Boltzmann law.
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Fig. 2.1. Two-dimensional transfer function of a thermal radiation sensor.

determined from two input temperatures. It should be noted that a transfer func-
tion represents the input-to-output relationship. However, when a sensor is used for
measuring or detecting a stimulus, an inversed function (output-to-input) needs to
be employed. When a transfer function is linear, the inversed function is very easy
to compute. When it is nonlinear the task is more complex, and in many cases, the
analytical solution may not lend itself to reasonably simple data processing. In these
cases, an approximation technique often is the solution.

2.2 Span (Full-Scale Input)

A dynamic range of stimuli which may be converted by a sensor is called a span
or an input full scale (FS). It represents the highest possible input value that can
be applied to the sensor without causing an unacceptably large inaccuracy. For the
sensors with a very broad and nonlinear response characteristic, a dynamic range of
the input stimuli is often expressed in decibels, which is a logarithmic measure of
ratios of either power or force (voltage). It should be emphasized that decibels do not
measure absolute values, but a ratio of values only. A decibel scale represents signal
magnitudes by much smaller numbers, which, in many cases, is far more convenient.
Being a nonlinear scale, it may represent low-level signals with high resolution while
compressing the high-level numbers. In other words, the logarithmic scale for small
objects works as a microscope, and for the large objects, it works as a telescope. By
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Table 2.1. Relationship Among Power, Force (Voltage, Current), and Decibels

Power
ratio 1.023 1.26 10.0 100 103 104 105 106 107 108 109 1010

Force
ratio 1.012 1.12 3.16 10.0 31.6 100 316 103 3162 104 3× 104 105

Decibels 0.1 1.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0

definition, decibels are equal to 10 times the log of the ratio of powers (Table 2.1):

1 dB= 10 log
P2

P1
. (2.8)

In a similar manner, decibels are equal to 20 times the log of the force, current, or
voltage:

1 dB= 20 log
S2

S1
. (2.9)

2.3 Full-Scale Output

Full-scale output (FSO) is the algebraic difference between the electrical output sig-
nals measured with maximum input stimulus and the lowest input stimulus applied.
This must include all deviations from the ideal transfer function. For instance, the
FSO output in Fig. 2.2A is represented by SFS.

(A) (B)

Fig. 2.2. Transfer function (A) and accuracy limits (B). Error is specified in terms of input
value.
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2.4 Accuracy

Avery important characteristic of a sensor is accuracy which really means inaccuracy.
Inaccuracy is measured as a highest deviation of a value represented by the sensor
from the ideal or true value at its input. The true value is attributed to the object of
measurement and accepted as having a specified uncertainty (see 2.20.)

The deviation can be described as a difference between the value which is com-
puted from the output voltage and the actual input value. For example, a linear dis-
placement sensor ideally should generate 1 mV per 1-mm displacement; that is,
its transfer function is linear with a slope (sensitivity) b= 1 mV/mm. However,
in the experiment, a displacement of s= 10 mm produced an output of S= 10.5
mV. Converting this number into the displacement value by using the inversed
transfer function (1/b= 1 mm/mV), we would calculate that the displacement was
sx = S/b= 10.5 mm; that is sx − s= 0.5 mm more than the actual. This extra 0.5
mm is an erroneous deviation in the measurement, or error. Therefore, in a 10-mm
range, the sensor’s absolute inaccuracy is 0.5 mm, or in the relative terms, inaccuracy
is (0.5mm/10mm)× 100%= 5%. If we repeat this experiment over and over again
without any random error and every time we observe an error of 0.5 mm, we may say
that the sensor has a systematic inaccuracy of 0.5 mm over a 10-mm span. Naturally,
a random component is always present, so the systematic error may be represented
as an average or mean value of multiple errors.

Figure 2.2A shows an ideal or theoretical transfer function. In the real world, any
sensor performs with some kind of imperfection. A possible real transfer function is
represented by a thick line, which generally may be neither linear nor monotonic. A
real function rarely coincides with the ideal. Because of material variations, work-
manship, design errors, manufacturing tolerances, and other limitations, it is possible
to have a large family of real transfer functions, even when sensors are tested under
identical conditions. However, all runs of the real transfer functions must fall within
the limits of a specified accuracy. These permissive limits differ from the ideal transfer
function line by ±�. The real functions deviate from the ideal by ±δ, where δ≤�.
For example, let us consider a stimulus having value x. Ideally, we would expect this
value to correspond to point z on the transfer function, resulting in the output value
Y . Instead, the real function will respond at point Z, producing output value Y ′. This
output value corresponds to point z′ on the ideal transfer function, which, in turn,
relates to a “would-be” input stimulus x′ whose value is smaller than x. Thus, in this
example, imperfection in the sensor’s transfer function leads to a measurement error
of −δ.

The accuracy rating includes a combined effect of part-to-part variations, a hys-
teresis, a dead band, calibration, and repeatability errors (see later subsections). The
specified accuracy limits generally are used in the worst-case analysis to determine
the worst possible performance of the system. Figure 2.2B shows that±� may more
closely follow the real transfer function, meaning better tolerances of the sensor’s ac-
curacy. This can be accomplished by a multiple-point calibration. Thus, the specified
accuracy limits are established not around the theoretical (ideal) transfer function,
but around the calibration curve, which is determined during the actual calibration
procedure. Then, the permissive limits become narrower, as they do not embrace
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part-to-part variations between the sensors and are geared specifically to the cali-
brated unit. Clearly, this method allows more accurate sensing; however, in some
applications, it may be prohibitive because of a higher cost.

The inaccuracy rating may be represented in a number of forms:

1. Directly in terms of measured value (�)

2. In percent of input span (full scale)
3. In terms of output signal

For example, a piezoresistive pressure sensor has a 100-kPa input full scale and a 10�
full-scale output. Its inaccuracy may be specified as ±0.5%,±500 Pa, or ±0.05�.

In modern sensors, specification of accuracy often is replaced by a more compre-
hensive value of uncertainty (see Section 2.20) because uncertainty is comprised of
all distorting effects both systematic and random and is not limited to the inaccuracy
of a transfer function.

2.5 Calibration

If the sensor’s manufacturer’s tolerances and tolerances of the interface (signal condi-
tioning) circuit are broader than the required system accuracy, a calibration is required.
For example, we need to measure temperature with an accuracy±0.5◦C; however, an
available sensor is rated as having an accuracy of±1◦C. Does it mean that the sensor
can not be used? No, it can, but that particular sensor needs to be calibrated; that
is, its individual transfer function needs to be found during calibration. Calibration
means the determination of specific variables that describe the overall transfer func-
tion. Overall means of the entire circuit, including the sensor, the interface circuit,
and the A/D converter. The mathematical model of the transfer function should be
known before calibration. If the model is linear [Eq. (2.1)], then the calibration should
determine variables a and b; if it is exponential [Eq. (2.3)], variables a and k should
be determined; and so on. Let us consider a simple linear transfer function. Because
a minimum of two points are required to define a straight line, at least a two-point
calibration is required. For example, if one uses a forward-biased semiconductor p-n
junction for temperature measurement, with a high degree of accuracy its transfer
function (temperature is the input and voltage is the output) can be considered linear:

v= a+ bt. (2.10)

To determine constants a and b, such a sensor should be subjected to two temperatures
(t1 and t2) and two corresponding output voltages (v1 and v2) will be registered. Then,
after substituting these values into Eq. (2.10), we arrive at

v1= a+ bt1, (2.11)
v2= a+ bt2,

and the constants are computed as

b= v1− v2

t1− t2
and a= v1− bt1. (2.12)
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To compute the temperature from the output voltage, a measured voltage is inserted
into an inversed equation

t = v− a

b
. (2.13)

In some fortunate cases, one of the constants may be specified with a sufficient
accuracy so that no calibration of that particular constant may be needed. In the same
p-n-junction temperature sensor, the slope b is usually a very consistent value for a
given lot and type of semiconductor. For example, a value of b=−0.002268 V/◦C
was determined to be consistent for a selected type of the diode, then a single-point
calibration is needed to find out a as a= v1+ 0.002268t1.

For nonlinear functions, more than two points may be required, depending on a
mathematical model of the transfer function. Any transfer function may be modeled
by a polynomial, and depending on required accuracy, the number of the calibration
points should be selected. Because calibration may be a slow process, to reduce
production cost in manufacturing, it is very important to minimize the number of
calibration points.

Another way to calibrate a nonlinear transfer function is to use a piecewise ap-
proximation. As was mentioned earlier, any section of a curvature, when sufficiently
small, can be considered linear and modeled by Eq. (2.1). Then, a curvature will be
described by a family of linear lines where each has its own constants a and b. Dur-
ing the measurement, one should determine where on the curve a particular output
voltage S is situated and select the appropriate set of constants a and b to compute
the value of a corresponding stimulus s from an equation identical to Eq. (2.13).

To calibrate sensors, it is essential to have and properly maintain precision and ac-
curate physical standards of the appropriate stimuli. For example, to calibrate contact-
temperature sensors, either a temperature-controlled water bath or a “dry-well” cavity
is required. To calibrate the infrared sensors, a blackbody cavity would be needed.
To calibrate a hygrometer, a series of saturated salt solutions are required to sustain
a constant relative humidity in a closed container, and so on. It should be clearly un-
derstood that the sensing system accuracy is directly attached to the accuracy of the
calibrator.An uncertainty of the calibrating standard must be included in the statement
on the overall uncertainty, as explained in 2.20.

2.6 Calibration Error

The calibration error is inaccuracy permitted by a manufacturer when a sensor is
calibrated in the factory. This error is of a systematic nature, meaning that it is added
to all possible real transfer functions. It shifts the accuracy of transduction for each
stimulus point by a constant. This error is not necessarily uniform over the range
and may change depending on the type of error in the calibration. For example, let
us consider a two-point calibration of a real linear transfer function (thick line in
Fig. 2.3). To determine the slope and the intercept of the function, two stimuli, s1
and s2, are applied to the sensor. The sensor responds with two corresponding output
signals A1 and A2. The first response was measured absolutely accurately, however,
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Fig. 2.3. Calibration error.

the higher signal was measured with error−�. This results in errors in the slope and
intercept calculation. A new intercept, a1, will differ from the real intercept, a, by

δa = a1− a= �

s2− s1
, (2.14)

and the slope will be calculated with error:

δb=− �

s2− s1
, (2.15)

2.7 Hysteresis

A hysteresis error is a deviation of the sensor’s output at a specified point of the input
signal when it is approached from the opposite directions (Fig. 2.4). For example,
a displacement sensor when the object moves from left to right at a certain point
produces a voltage which differs by 20 mV from that when the object moves from
right to left. If the sensitivity of the sensor is 10 mV/mm, the hysteresis error in terms
of displacement units is 2 mm. Typical causes for hysteresis are friction and structural
changes in the materials.

2.8 Nonlinearity

Nonlinearity error is specified for sensors whose transfer function may be approxi-
mated by a straight line [Eq. (2.1)].Anonlinearity is a maximum deviation (L) of a real
transfer function from the approximation straight line. The term “linearity” actually
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Fig. 2.4. Transfer function with hysteresis.

means “nonlinearity.” When more than one calibration run is made, the worst linearity
seen during any one calibration cycle should be stated. Usually, it is specified either
in percent of span or in terms of measured value (e.g, in kPa or ◦C). “Linearity,” when
not accompanied by a statement explaining what sort of straight line it is referring to,
is meaningless. There are several ways to specify a nonlinearity, depending how the
line is superimposed on the transfer function. One way is to use terminal points (Fig.
2.5A); that is, to determine output values at the smallest and highest stimulus values
and to draw a straight line through these two points (line 1). Here, near the terminal
points, the nonlinearity error is the smallest and it is higher somewhere in between.

(A) (B)

Terminal
Points

Fig. 2.5. Linear approximations of a nonlinear transfer function (A) and independent linearity
(B).
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Another way to define the approximation line is to use a method of least squares
(line 2 in Fig. 2.5A). This can be done in the following manner. Measure several (n)
output values S at input values s over a substantially broad range, preferably over
an entire full scale. Use the following formulas for linear regression to determine
intercept a and slope b of the best-fit straight line:

a=
∑

S
∑

s2−∑ s
∑

sS

n
∑

s2− (
∑

s)2
, b= n

∑
sS−∑ s

∑
S

n
∑

s2− (
∑

s)2
, (2.16)

where
∑

is the summation of n numbers.
In some applications, a higher accuracy may be desirable in a particular narrower

section of the input range. For instance, a medical thermometer should have the best
accuracy in a fever definition region which is between 37◦C and 38◦C. It may have a
somewhat lower accuracy beyond these limits. Usually, such a sensor is calibrated in
the region where the highest accuracy is desirable. Then, the approximation line may
be drawn through the calibration point c (line 3 in Fig. 2.5A). As a result, nonlinearity
has the smallest value near the calibration point and it increases toward the ends of the
span. In this method, the line is often determined as tangent to the transfer function
in point c. If the actual transfer function is known, the slope of the line can be found
from Eq. (2.5).

Independent linearity is referred to as the so-called “best straight line” (Fig. 2.5B),
which is a line midway between two parallel straight lines closest together and en-
veloping all output values on a real transfer function.

Depending on the specification method, approximation lines may have different
intercepts and slopes. Therefore, nonlinearity measures may differ quite substantially
from one another.Auser should be aware that manufacturers often publish the smallest
possible number to specify nonlinearity, without defining what method was used.

2.9 Saturation

Every sensor has its operating limits. Even if it is considered linear, at some levels
of the input stimuli, its output signal no longer will be responsive. A further increase
in stimulus does not produce a desirable output. It is said that the sensor exhibits a
span-end nonlinearity or saturation (Fig. 2.6).

Fig. 2.6. Transfer function with satura-
tion.
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(A) (B)

Fig. 2.7. (A) The repeatability error. The same output signal S1 corresponds to two different
input signals. (B) The dead-band zone in a transfer function.

2.10 Repeatability

Arepeatability ( reproducibility) error is caused by the inability of a sensor to represent
the same value under identical conditions. It is expressed as the maximum difference
between output readings as determined by two calibrating cycles (Fig. 2.7A), unless
otherwise specified. It is usually represented as % of FS:

δr = �

FS
× 100%. (2.17)

Possible sources of the repeatability error may be thermal noise, buildup charge,
material plasticity, and so forth.

2.11 Dead Band

The dead band is the insensitivity of a sensor in a specific range of input signals (Fig.
2.7B). In that range, the output may remain near a certain value (often zero) over an
entire dead-band zone.

2.12 Resolution

Resolution describes the smallest increments of stimulus which can be sensed. When
a stimulus continuously varies over the range, the output signals of some sensors will
not be perfectly smooth, even under the no-noise conditions. The output may change
in small steps. This is typical for potentiometric transducers, occupancy infrared de-
tectors with grid masks, and other sensors where the output signal change is enabled
only upon a certain degree of stimulus variation. In addition, any signal converted
into a digital format is broken into small steps, where a number is assigned to each
step. The magnitude of the input variation which results in the output smallest step
is specified as resolution under specified conditions (if any). For instance, for the oc-
cupancy detector, the resolution may be specified as follows: “resolution—minimum
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equidistant displacement of the object for 20 cm at 5 m distance.” For wire-wound
potentiometric angular sensors, resolution may be specified as “a minimum angle of
0.5◦.” Sometimes, it may be specified as percent of full scale (FS). For instance, for
the angular sensor having 270◦ FS, the 0.5◦ resolution may be specified as 0.181% of
FS. It should be noted that the step size may vary over the range, hence, the resolu-
tion may be specified as typical, average, or “worst.” The resolution of digital output
format sensors is given by the number of bits in the data word. For instance, the
resolution may be specified as “8-bit resolution.” To make sense, this statement must
be accomplished with either the FS value or the value of LSB (least significant bit).
When there are no measurable steps in the output signal, it is said that the sensor has
continuous or infinitesimal resolution (sometimes erroneously referred to as “infinite
resolution”).

2.13 Special Properties

Special input properties may be needed to specify for some sensors. For instance, light
detectors are sensitive within a limited optical bandwidth. Therefore, it is appropriate
to specify a spectral response for them.

2.14 Output Impedance

The output impedance Zout is important to know to better interface a sensor with
the electronic circuit. This impedance is connected either in parallel with the input
impedance Zin of the circuit (voltage connection) or in series (current connection).
Figure 2.8 shows these two connections. The output and input impedances generally
should be represented in a complex form, as they may include active and reactive
components. To minimize the output signal distortions, a current generating sensor
(B) should have an output impedance as high as possible and the circuit’s input
impedance should be low. For the voltage connection (A), a sensor is preferable with
lower Zout and the circuit should have Zin as high as practical.

(A) (B)

Fig. 2.8. Sensor connection to an interface circuit: (A) sensor has voltage output; (B) sensor
has current output.
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2.15 Excitation

Excitation is the electrical signal needed for the active sensor operation. Excitation is
specified as a range of voltage and/or current. For some sensors, the frequency of the
excitation signal and its stability must also be specified. Variations in the excitation
may alter the sensor transfer function and cause output errors.

An example of excitation signal specification is as follows:
Maximum current through a thermistor

in still air 50 µA
in water 200 µA

2.16 Dynamic Characteristics

Under static conditions, a sensor is fully described by its transfer function, span,
calibration, and so forth. However, when an input stimulus varies, a sensor response
generally does not follow with perfect fidelity. The reason is that both the sensor and its
coupling with the source of stimulus cannot always respond instantly. In other words,
a sensor may be characterized with a time-dependent characteristic, which is called a
dynamic characteristic. If a sensor does not respond instantly, it may indicate values
of stimuli which are somewhat different from the real; that is, the sensor responds
with a dynamic error. A difference between static and dynamic errors is that the latter
is always time dependent. If a sensor is a part of a control system which has its own
dynamic characteristics, the combination may cause, at best, a delay in representing
a true value of a stimulus or, at worst, cause oscillations.

The warm-up time is the time between applying electric power to the sensor
or excitation signal and the moment when the sensor can operate within its specified
accuracy. Many sensors have a negligibly short warm-up time. However, some detec-
tors, especially those that operate in a thermally controlled environment (a thermostat)
may require seconds and minutes of warm-up time before they are fully operational
within the specified accuracy limits.

In a control system theory, it is common to describe the input–output relationship
through a constant-coefficient linear differential equation. Then, the sensor’s dynamic
(time-dependent) characteristics can be studied by evaluating such an equation. De-
pending on the sensor design, the differential equation can be of several orders.

A zero-order sensor is characterized by the relationship which, for a linear transfer
function, is a modified Eq. (2.1) where the input and output are functions of time t :

S(t)= a+ bs(t). (2.18)

The value a is called an offset and b is called static sensitivity. Equation (2.18) requires
that the sensor does not incorporate any energy storage device, like a capacitor or mass.
A zero-order sensor responds instantaneously. In other words, such a sensor does not
need any dynamic characteristics.
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(A) (B)

Fig. 2.9. Frequency characteristic (A) and response of a first-order sensor (B) with limited
upper and lower cutoff frequencies. τu and τL are corresponding time constants.

A first-order differential equation describes a sensor that incorporates one energy
storage component. The relationship between the input s(t) and output S(t) is the
differential equation

b1
dS(t)

dt
+ b0S(t)= s(t). (2.19)

A typical example of a first-order sensor is a temperature sensor for which the energy
storage is thermal capacity. The first-order sensors may be specified by a manufacturer
in various ways. Typical is a frequency response, which specifies how fast a first-order
sensor can react to a change in the input stimulus. The frequency response is expressed
in hertz or rads per second to specify the relative reduction in the output signal at a
certain frequency (Fig. 2.9A). A commonly used reduction number (frequency limit)
is −3 dB. It shows at what frequency the output voltage (or current) drops by about
30%. The frequency response limit fu is often called the upper cutoff frequency, as
it is considered the highest frequency a sensor can process.

The frequency response directly relates to a speed response, which is defined in
units of input stimulus per unit of time. Which response, frequency or speed, to specify
in any particular case depends on the sensor type, its application, and the preference
of a designer.

Another way to specify speed response is by time, which is required by the sensor
to reach 90% of a steady-state or maximum level upon exposure to a step stimulus.
For the first-order response, it is very convenient to use a so-called time constant. The
time constant, τ , is a measure of the sensor’s inertia. In electrical terms, it is equal
to the product of electrical capacitance and resistance: τ =CR. In thermal terms,
thermal capacity and thermal resistances should be used instead. Practically, the time
constant can be easily measured. A first-order system response is

S= Sm(1− e−t/τ ), (2.20)

where Sm is steady-state output, t is time, and e is the base of natural logarithm.



2.16 Dynamic Characteristics 27

Substituting t = τ , we get
S

Sm

= 1− 1

e
= 0.6321. (2.21)

In other words, after an elapse of time equal to one time constant, the response
reaches about 63% of its steady-state level. Similarly, it can be shown that after two
time constants, the height will be 86.5% and after three time constants it will be 95%.

The cutoff frequency indicates the lowest or highest frequency of stimulus that
the sensor can process. The upper cutoff frequency shows how fast the sensor reacts;
the lower cutoff frequency shows how slow the sensor can process changing stimuli.
Figure 2.9B depicts the sensor’s response when both the upper and lower cutoff
frequencies are limited. As a rule of thumb, a simple formula can be used to establish
a connection between the cutoff frequency, fc (either upper and lower), and time
constant in a first-order sensor:

fc≈ 0.159

τ
, (2.22)

The phase shift at a specific frequency defines how the output signal lags behind
in representing the stimulus change (Fig. 2.9A). The shift is measured in angular
degrees or rads and is usually specified for a sensor that processes periodic signals. If
a sensor is a part of a feedback control system, it is very important to know its phase
characteristic. Phase lag reduces the phase margin of the system and may result in
overall instability.

A second-order differential equation describes a sensor that incorporates two
energy storage components. The relationship between the input s(t) and output S(t)

is the differential equation

b2
d2S(t)

dt2
+ b1

dS(t)

dt
+ b0S(t)= s(t). (2.23)

An example of a second-order sensor is an accelerometer that incorporates a mass
and a spring.

A second-order response is specific for a sensor that responds with a periodic sig-
nal. Such a periodic response may be very brief and we say that the sensor is damped,
or it may be of a prolonged time and even may oscillate continuously. Naturally, for
a sensor, such a continuous oscillation is a malfunction and must be avoided. Any
second-order sensor may be characterized by a resonant (natural) frequency, which
is a number expressed in hertz or rads per second. The natural frequency shows where
the sensor’s output signal increases considerably. Many sensors behave as if a dy-
namic sensor’s output conforms to the standard curve of a second-order response; the
manufacturer will state the natural frequency and the damping ratio of the sensor. The
resonant frequency may be related to mechanical, thermal, or electrical properties of
the detector. Generally, the operating frequency range for the sensor should be se-
lected well below (at least 60%) or above the resonant frequency. However, in some
sensors, the resonant frequency is the operating point. For instance, in glass-breakage
detectors (used in security systems), the resonant makes the sensor selectively sensi-
tive to a narrow bandwidth, which is specific for the acoustic spectrum produced by
shattered glass.
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Fig. 2.10. Responses of sensors with different damping characteristics.

Fig. 2.11. Types of response: (A) unlimited upper and lower
frequencies; (B) first-order limited upper cutoff frequency; (C)
first-order limited lower cutoff frequency; (D) first-order lim-
ited both upper and lower cutoff frequencies; (E) narrow band-
width response (resonant); (F) wide bandwidth with resonant.

Damping is the progressive reduction or suppression of the oscillation in the
sensor having higher than a first-order response. When the sensor’s response is as
fast as possible without overshoot, the response is said to be critically damped (Fig.
2.10). An underdamped response is when the overshoot occurs and the overdamped
response is slower than the critical response. The damping ratio is a number expressing
the quotient of the actual damping of a second-order linear transducer by its critical
damping.

For an oscillating response, as shown in Fig. 2.10, a damping factor is a measure
of damping, expressed (without sign) as the quotient of the greater by the lesser of
a pair of consecutive swings in opposite directions of the output signal, about an
ultimately steady-state value. Hence, the damping factor can be measured as

Damping factor= F

A
= A

B
= B

C
= etc. (2.24)
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2.17 Environmental Factors

Storage conditions are nonoperating environmental limits to which a sensor may be
subjected during a specified period without permanently altering its performance un-
der normal operating conditions. Usually, storage conditions include the highest and
the lowest storage temperatures and maximum relative humidities at these temper-
atures. The word “noncondensing” may be added to the relative humidity number.
Depending on the sensor’s nature, some specific limitation for the storage may need
to be considered (e.g., maximum pressure, presence of some gases or contaminating
fumes, etc.).

Short- and long-term stabilities (drift) are parts of the accuracy specification.
The short-term stability is manifested as changes in the sensor’s performance within
minutes, hours, or even days. The sensor’s output signal may increase or decrease,
which, in other terms, may be described as ultralow-frequency noise. The long-term
stability may be related to aging of the sensor materials, which is an irreversible change
in the material’s electrical, mechanical, chemical, or thermal properties; that is, the
long-term drift is usually unidirectional. It happens over a relatively long time span,
such as months and years. Long-term stability is one of the most important for sensors
used for precision measurements. Aging depends heavily on environmental storage
and operating conditions, how well the sensor components are isolated from the
environment, and what materials are used for their fabrication. The aging phenomenon
is typical for sensors having organic components and, in general, is not an issue for
a sensor made with only nonorganic materials. For instance, glass-coated metal-
oxide thermistors exhibit much greater long-term stability compared to epoxy-coated
thermistors.Apowerful way to improve long-term stability is to preage the component
at extreme conditions. The extreme conditions may be cycled from the lowest to
the highest. For instance, a sensor may be periodically swung from freezing to hot
temperatures. Such accelerated aging not only enhances the stability of the sensor’s
characteristics but also improves the reliability (see Section 2.18), as the preaging
process reveals many hidden defects. For instance, epoxy-coated thermistors may
be greatly improved if they are maintained at +150◦C for 1 month before they are
calibrated and installed in a product.

Environmental conditions to which a sensor is subjected do not include variables
which the sensor measures. For instance, an air-pressure sensor usually is subjected
not just to air pressure but to other influences as well, such as the temperatures of air
and surrounding components, humidity, vibration, ionizing radiation, electromagnetic
fields, gravitational forces, and so forth. All of these factors may and usually do affect
the sensor’s performance. Both static and dynamic variations in these conditions
should be considered. Some environmental conditions are usually of a multiplicative
nature; that is, they alter a transfer function of the sensor (e.g., changing its gain). One
example is the resistive strain gauge, whose sensitivity increases with temperature.

Environmental stability is quite broad and usually a very important requirement.
Both the sensor designer and the application engineer should consider all possible ex-
ternal factors which may affect the sensor’s performance. A piezoelectric accelerom-
eter may generate spurious signals if affected by a sudden change in ambient tem-
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perature, electrostatic discharge, formation of electrical charges (triboelectric effect),
vibration of a connecting cable, electromagnetic interference (EMI), and so forth.
Even if a manufacturer does not specify such effects, an application engineer should
simulate them during the prototype phase of the design process. If, indeed, the envi-
ronmental factors degrade the sensor’s performance, additional corrective measures
may be required (see Chapter 4) (e.g., placing the sensor in a protective box, using
electrical shielding, using a thermal insulation or a thermostat).

Temperature factors are very important for sensor performance; they must be
known and taken into account. The operating temperature range is the span of ambi-
ent temperatures given by their upper and lower extremes (e.g., −20◦C to +100◦C)
within which the sensor maintains its specified accuracy. Many sensors change with
temperature and their transfer functions may shift significantly. Special compensating
elements are often incorporated either directly into the sensor or into signal condi-
tioning circuits, to compensate for temperature errors. The simplest way of specifying
tolerances of thermal effects is provided by the error-band concept, which is simply
the error band that is applicable over the operating temperature band. A temperature
band may be divided into sections, whereas the error band is separately specified for
each section. For example, a sensor may be specified to have an accuracy of±1% in
the range from 0◦C to 50◦C,±2% from−20◦C to 0◦C and from+50◦C to 100◦C, and
±3% beyond these ranges within operating limits specified from−40◦C to+150◦C.

Temperatures will also affect dynamic characteristics, particularly when they em-
ploy viscous damping. A relatively fast temperature change may cause the sensor to
generate a spurious output signal. For instance, a dual pyroelectric sensor in a motion
detector is insensitive to slowly varying ambient temperature. However, when the
temperature changes quickly, the sensor will generate an electric current that may be
recognized by a processing circuit as a valid response to a stimulus, thus causing a
false-positive detection.

A self-heating error may be specified when an excitation signal is absorbed by a
sensor and changes its temperature by such a degree that it may affect its accuracy.
For instance, a thermistor temperature sensor requires passage of electric current,
causing heat dissipation within the sensor’s body. Depending on its coupling with the
environment, the sensors’ temperature may increase due to a self-heating effect. This
will result in errors in temperature measurement because the thermistor now acts as an
additional spurious source of thermal energy. The coupling depends on the media in
which the sensor operates—a dry contact, liquid, air, and so forth. A worst coupling
may be through still air. For thermistors, manufacturers often specify self-heating
errors in air, stirred liquid, or other media.

A sensor’s temperature increase above its surroundings may be found from the
following formula:

�T ◦ = V 2

(ξvc+α)R
, (2.25)

where ξ is the sensor’s mass density, c is specific heat, v is the volume of the sensor,
α is the coefficient of thermal coupling between the sensor and the outside (thermal
conductivity), R is the electrical resistance, and V is the effective voltage across the
resistance. If a self-heating results in an error, Eq. (2.25) may be used as a design
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guide. For instance, to increase α, a thermistor detector should be well coupled to the
object by increasing the contact area, applying thermally conductive grease or using
thermally conductive adhesives. Also, high-resistance sensors and low measurement
voltages are preferable.

2.18 Reliability

Reliability is the ability of a sensor to perform a required function under stated con-
ditions for a stated period. It is expressed in statistical terms as a probability that
the device will function without failure over a specified time or a number of uses.
It should be noted that reliability is not a characteristic of drift or noise stability. It
specifies a failure, either temporary or permanent, exceeding the limits of a sensor’s
performance under normal operating conditions.

Reliability is an important requirement; however, it is rarely specified by the
sensor manufacturers. Probably, the reason for that is the absence of a commonly
accepted measure for the term. In the United States, for many electronic devices,
the procedure for predicting in-service reliability is the MTBF (mean time between
failure) calculation described in MIL-HDBK-217 standard. Its basic approach is to
arrive at a MTBF rate for a device by calculating the individual failure rates of the
individual components used and by factoring in the kind of operation the device will
see: its temperature, stress, environment, and screening level (measure of quality).
Unfortunately, the MTBF reflects reliability only indirectly and it is often hardly ap-
plicable to everyday use of the device. The qualification tests on sensors are performed
on combinations of the worst possible conditions. One approach (suggested by MIL-
STD-883) is 1000 h, loaded at maximum temperature. This test does not qualify for
such important impacts as fast temperature changes. The most appropriate method
of testing would be accelerated life qualification. It is a procedure that emulates the
sensor’s operation, providing real-world stresses, but compressing years into weeks.
Three goals are behind the test: to establish MTBF; to identify first failure points
that can then be strengthened by design changes; and to identify the overall system
practical lifetime.

One possible way to compress time is to use the same profile as the actual operat-
ing cycle, including maximum loading and power-on, power-off cycles, but expanded
environmental highest and lowest ranges (temperature, humidity, and pressure). The
highest and lowest limits should be substantially broader than normal operating con-
ditions. Performance characteristics may be outside specifications, but must return to
those when the device is brought back to the specified operating range. For example,
if a sensor is specified to operate up to 50◦C at the highest relative humidity (RH)
of 85% at a maximum supply voltage of +15 V, it may be cycled up to 100◦C at
99% RH and at +18 V power supply. To estimate number of test cycles (n), the fol-
lowing empirical formula [developed by Sandstrand Aerospace, (Rockford, IL) and
Interpoint Corp. (Redmond, WA)] [1] may be useful:

n=N

(
�Tmax

�Ttest

)2.5

, (2.26)
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where N is the estimated number of cycles per lifetime, �Tmax is the maximum
specified temperature fluctuation, and �Ttest maximum cycled temperature fluctua-
tion during the test. For instance, if the normal temperature is 25◦C, the maximum
specified temperature is 50◦C, cycling was up to 100◦C, and over the lifetime (say,
10 years), the sensor was estimated to be subjected to 20,000 cycles, then the number
of test cycles is calculated as

n= 20,000

(
50− 25

100− 25

)2.5

= 1283.

As a result, the accelerated life test requires about 1300 cycles instead of 20,000.
It should be noted, however, that the 2.5 factor was derived from a solder fatigue
multiple, because that element is heavily influenced by cycling. Some sensors have
no solder connections at all, and some might have even more sensitivity to cycling
substances other than solder, (e.g, electrically conductive epoxy). Then, the factor
should be selected to be somewhat smaller. As a result of the accelerated life test, the
reliability may be expressed as a probability of failure. For instance, if 2 out of 100
sensors (with an estimated lifetime of 10 years) failed the accelerated life test, the
reliability is specified as 98% over 10 years.

A sensor, depending on its application, may be subjected to some other environ-
mental effects which potentially can alter its performance or uncover hidden defects.
Among such additional tests are:

• High temperature/high humidity while being fully electrically powered. For in-
stance, a sensor may be subjected to its maximum allowable temperature at 85–
90% RH and kept under these conditions for 500 h. This test is very useful for
detecting contaminations and evaluating packaging integrity. The life of sensors,
operating at normal room temperatures, is often accelerated at 85◦C and 85% RH,
which is sometimes called an “85–85 test.”

• Mechanical shocks and vibrations may be used to simulate adverse environmental
conditions, especially in the evaluation wire bonds, adhesion of epoxy, and so
forth. A sensor may be dropped to generate high-level accelerations (up to 3000g
of force). The drops should be made on different axes. Harmonic vibrations should
be applied to the sensor over the range which includes its natural frequency. In
the United States military standard 750, methods 2016 and 2056 are often used
for mechanical tests.

• Extreme storage conditions may be simulated, for instance at +100 and −40◦C
while maintaining a sensor for at least 1000 h under these conditions. This test
simulates storage and shipping conditions and usually is performed on nonoper-
ating devices. The upper and lower temperature limits must be consistent with the
sensor’s physical nature. For example, TGS pyroelectric sensors manufactured
in the past by Philips are characterized by a Curie temperature of +60◦C. Ap-
proaching and surpassing this temperature results in a permanent destruction of
sensitivity. Hence, the temperature of such sensors should never exceed +50◦C,
which must be clearly specified and marked on its packaging material.
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• Thermal shock or temperature cycling (TC) is subjecting a sensor to alternate
extreme conditions. For example, it may be dwelled for 30 min at −40◦C, then
quickly moved to +100◦C for 30 min, and then back to cold. The method must
specify the total number of cycling, like 100 or 1000. This test helps to uncover
die bond, wire bond, epoxy connections, and packaging integrity.

• To simulate sea conditions, sensors may be subjected to a salt spray atmosphere
for a specified time, (e.g., 24 h). This helps to uncover its resistance to corrosion
and structural defects.

2.19 Application Characteristics

Design, weight, and overall dimensions are geared to specific areas of applications.
Price may be a secondary issue when the sensor’s reliability and accuracy are of
paramount importance. If a sensor is intended for life-support equipment, weapons
or spacecraft, a high price tag may be well justified to assure high accuracy and
reliability. On the other hand, for a very broad range of consumer applications, the
price of a sensor often becomes a cornerstone of a design.

2.20 Uncertainty

Nothing is perfect in this world, at least in the sense that we perceive it. All mate-
rials are not exactly as we think they are. Our knowledge of even the purest of the
materials is always approximate; machines are not perfect and never produce per-
fectly identical parts according to drawings. All components experience drifts related
to the environment and their aging; external interferences may enter the system and
alter its performance and modify the output signal. Workers are not consistent and
the human factor is nearly always present. Manufacturers fight an everlasting battle
for the uniformity and consistency of the processes, yet the reality is that every part
produced is never ideal and carries an uncertainty of its properties. Any measurement
system consists of many components, including sensors. Thus, no matter how accu-
rate the measurement is, it is only an approximation or estimate of the true value of
the specific quantity subject to measurement, (i.e., the stimulus or measurand). The
result of a measurement should be considered complete only when accompanied by
a quantitative statement of its uncertainty. We simply never can be 100% sure of the
measured value.

When taking individual measurements (samples) under noisy conditions we ex-
pect that the stimulus s is represented by the sensor as having a somewhat different
value s′, so that the error in measurement is expressed as

δ= s′ − s, (2.27)

The difference between the error specified by Eq. (2.27) and uncertainty should
always be clearly understood. An error can be compensated to a certain degree by
correcting its systematic component. The result of such a correction can unknowably
be very close to the unknown true value of the stimulus and, thus, it will have a very
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small error. Yet, in spite of a small error, the uncertainty of measurement may be very
large so we cannot really trust that the error is indeed that small. In other words, an
error is what we unknowably get when we measure, whereas uncertainty is what we
think how large that error might be.

The International Committee for Weight and Measures (CIPM) considers that un-
certainty consists of many factors that can be grouped into two classes or types [2,3]:

A: Those evaluated by statistical methods
B: Those evaluated by other means.

This division is not clear-cut and the borderline between Types A and B is somewhat
illusive. Generally, Type A components of uncertainty arise from random effects,
whereas the Type B components arise from systematic effects.

Type A uncertainty is generally specified by a standard deviation si , equal to
the positive square root of the statistically estimated variance s2

i and the associated
number of degrees of freedom vi . For such a component, the standard uncertainty
is ui = si . Standard uncertainty represents each component of uncertainty that con-
tributes to the uncertainty of the measurement result.

The evaluation of a Type A standard uncertainty may be based on any valid sta-
tistical method for treating data. Examples are calculating the standard deviation of
the mean of a series of independent observations, using the method of least squares
to fit a curve to data in order to estimate the parameters of the curve and their stan-
dard deviations. If the measurement situation is especially complicated, one should
consider obtaining the guidance of a statistician.

The evaluation of a Type B standard uncertainty is usually based on scientific
judgment using all of the relevant information available, which may include the
following:

• Previous measurement data
• Experience with or general knowledge of the behavior and property of relevant

sensors, materials, and instruments
• Manufacturer’s specifications
• Data obtained during calibration and other reports
• Uncertainties assigned to reference data taken from handbooks and manuals

For detailed guidance of assessing and specifying standard uncertainties one should
consult specialized texts (e.g., Ref. [4]).

When both Type A and Type B uncertainties are evaluated, they should be com-
bined to represent the combined standard uncertainty. This can be done by using a
conventional method for combining standard deviations. This method is often called
the law of propagation of uncertainty and in common parlance is known as “root-
sum-of-squares” (square root of the sum-of-the-squares) or RSS method of combining
uncertainty components estimated as standard deviations:

uc=
√

u2
1+ u2

2+ · · ·+ u2
i + · · ·+ u2

n, (2.28)

where n is the number of standard uncertainties in the uncertainty budget.
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Table 2.2. Uncertainty Budget for Thermistor Thermometer

Source of Uncertainty Standard uncertainty Type
(◦C)

Calibration of sensor 0.03 B
Measured errors

Repeated observations 0.02 A
Sensor noise 0.01 A
Amplifier noise 0.005 A
Sensor aging 0.025 B
Thermal loss through connecting wires 0.015 A
Dynamic error due to sensor’s inertia 0.005 B
Temperature instability of object of measurement 0.04 A
Transmitted noise 0.01 A
Misfit of transfer function 0.02 B

Ambient drifts
Voltage reference 0.01 A
Bridge resistors 0.01 A
Dielectric absorption in A/D capacitor 0.005 B
Digital resolution 0.01 A

Combined standard uncertainty 0.068

Table 2.2 shows an example of an uncertainty budget for an electronic thermome-
ter with a thermistor sensor which measures the temperature of a water bath. While
compiling such a table, one must be very careful not to miss any standard uncer-
tainty, not only in a sensor but also in the interface instrument, experimental setup,
and the object of measurement. This must be done for various environmental condi-
tions, which may include temperature, humidity, atmospheric pressure, power supply
variations, transmitted noise, aging, and many other factors.

No matter how accurately any individual measurement is made, (i.e., how close
the measured temperature is to the true temperature of an object), one never can be
sure that it is indeed accurate. The combined standard uncertainty of 0.068◦C does
not mean that the error of measurement is no greater than 0.068◦C. That value is just a
standard deviation, and if an observer has enough patience, he may find that individual
errors may be much larger. The word “uncertainty” by its very nature implies that the
uncertainty of the result of a measurement is an estimate and generally does not have
well-defined limits.
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